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Introduction 
Diffusion of water molecules in biological tissues is conventionally quantified via diffusion tensor imaging (DTI) [1]. DTI enables a Gaussian approximation to the 
probability distribution governing the random displacement of water molecules. In some circumstances of great interest, however, the displacement probability 
distribution can deviate considerably from a Gaussian form. Diffusional kurtosis imaging (DKI) allows for characterization of this deviation via inclusion of a kurtosis 
term in the expression for the displacement distribution [2]. The DKI model is parameterized by the diffusion and kurtosis tensors from which scalar measures such as 
mean diffusivity, fractional anisotropy, and axial, radial, and mean kurtoses are derived. Obtaining physically and biologically plausible estimates of these tensors in a 
computationally tractable framework is crucial to reliable estimation of the scalar kurtosis and diffusion metrics. In previous work concerning the estimation of 
generalized DTI tensors, unconstrained linear [3] and nonlinear least squares (ULLS and UNLS) [2] algorithms have been utilized. Unfortunately, in the presence of 
noise, unconstrained schemes do not necessarily produce plausible tensor estimates. To address this drawback, a parameterization has been proposed in a UNLS 
framework to guarantee a positive diffusivity function in a fourth-order tensor-only model of diffusion [4]. We present a tractable computational framework to obtain 
plausible estimates of kurtosis and diffusion tensors in DKI. The estimation problem is formulated as linearly constrained linear least squares (CLLS). Mean kurtosis 
(MK) maps for a human subject obtained using this formulation are compared to those estimated using ULLS. 
Theory 
For direction vector g  and b-value b, the diffusion signal intensity ( , )S bg  can be written as 
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where 0S  is the signal intensity for 0b = , ijD  and ijklW  are the elements of the second-order diffusion tensor D  and fourth-order kurtosis tensor W , respectively, 
and (1/ 3) tr( )D = D  is mean diffusivity, where tr(.)  denotes matrix trace. Diffusivity and kurtosis along direction g , denoted as ( )D g  and ( )K g , respectively, are 
given by 
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To ensure that the diffusivity and kurtosis parameters are physically and biologically plausible, we must have  
( ) 0D ≥g      and     max min( ) ( )K K K≥ ≥g g ,     for all g , (3)

where minK  is a constant in the [ 2, 0]−  range, and max max( ) [ ( )]K C b D=g g , where 3 0C≥ ≥ . The objective in the estimation problem is to find D  and W  such that 
the mean-square error between the two sides of (1) is minimized, while the constraints in (3) are satisfied. Using the change of variable 2D=V W  and for the typical 
choice of min 0K = , the problem of estimating D  and V  can be formulated as a CLLS problem. For other minK  values, the problem can be approximated using CLLS. 
The CLLS problem is a special case of convex quadratic programming which may be efficiently solved via standard methods [5]. 

Methods 
A DKI scan was performed on a healthy volunteer using a 3 T Siemens Trio system with an 8-channel head coil. 
Diffusion-weighted images were acquired along 30 gradient directions with a twice-refocused spin-echo planar imaging 
sequence (TR = 2300, TE = 109 ms, matrix = 128 × 128, FOV = 256 × 256 mm², 15 slices, slice thickness = 2 mm, gap 
= 2 mm, NEX = 6 for b = 0, NEX = 2 for b = 1000, 2000 s/mm2). The gradient images were smoothed prior to 
processing using a Gaussian kernel with a full width at half maximum of 2.5 mm in the imaging plane. We used the 
active set method implemented in MATLAB (http://www.mathworks.com) to solve the CLLS problem. MK was also 
estimated using ULLS, where the constraints in (3) were relaxed. Two processing scenarios were considered: in one 
case MK was obtained using all the available gradient images, and in the other scenario, it was estimated using 6 of b = 
1000 s/mm2 and all of b = 2000 s/mm2 gradient images. 
Results 
The total processing time for generating scalar kurtosis and diffusion maps using all gradient images was 130 and 335 
seconds for ULLS and CLLS, respectively. Figures 1 and 2 show the improved quality of the MK maps obtained using 
the CLLS approach over those estimated via ULLS. The voxels for which the ULLS approach yielded MK estimates 
smaller than min 0K =  are marked in black. In Figure 1, such voxels are most likely to occur in high FA regions such as 
parts of the corpus callosum, whereas in Figure 2 they are scattered in other parts of white matter as well. 
Discussion 
The voxels in Figures 1 and 2 where CLLS produces improved MK estimates are those for which ULLS yields a non-
positive definite (NPD) or nearly NPD estimate of D . In these voxels, the smallest eigenvalue of D , denoted as 3λ , 
has a small magnitude, which in turn causes the ULLS estimate of D  to be more sensitive to noise. The constraints in 
(3) force a larger 3λ  yielding a more reasonable estimate of D  and W  in these regions. In sum, the proposed CLLS 
formulation offers a tractable means for parameter estimation via minimizing a convex cost function, thus avoiding 
local minima and achieving reasonable speed. Moreover, it achieves improved noise robustness over unconstrained 
schemes by ensuring that the estimated diffusivity and kurtosis remain within a physically and biologically plausible 
range along the imaged gradient directions. The examples using actual image data highlight the clear advantage offered 
by the proposed formulation over the ULLS approach. The improvement is particularly evident with fewer b = 1000 

s/mm2 acquisitions (Figure 2). Another important advantage offered by the CLLS formulation over our fast DKI estimation method [6] is that it can accept any number 
of b-values and different numbers of gradient directions per b-value, thus enabling further optimization of the acquisition protocol. For instance, the comparable quality 
of the MK maps in Figures 1(b) and 2(b) suggests that to achieve a given map quality, the CLLS formulation requires fewer gradient images at b = 1000 s/mm2 than 
ULLS; in this case, offering a savings of 38% in acquisition time. Finally, it should be noted that while the improvement offered by CLLS comes at the expense of 
increased algorithm complexity and consequently higher run time, it is straightforward to speed up the computations via parallelization. 
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Figure 1. MK images obtained using b = 0, 
1000, 2000 s/mm2, and 30 gradient images 
for each b-value; (a) ULLS; and (b) CLLS. 
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Figure 2. MK images obtained using 6 
gradient directions for b = 1000  s/mm2 and 
30 gradient directions for b = 2000  s/mm2; 
(a) ULLS and (b) CLLS. 
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