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Fig. 1. Features used in the registration algorithm. 
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Fig. 2. The template, mean image 
generated by the proposed method, and 
affine registration based on the anisotropy 
map. 
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INTRODUCTION: The shortcoming of Diffusion Tensor Imaging (DTI) in resolving intra-voxel multiple fiber crossings has prompted great interest in 
developing more sophisticated models. Specifically, Tuch et al. [1] introduced a High Angular Resolution Diffusion Imaging (HARDI) method, suggesting 
that the apparent diffusion coefficients could be evaluated along many different directions without fitting a global function to the data. The outcome is a 
diffusion profile consisting of an angular distribution of apparent diffusivities. In this abstract, we propose a full-brain multi-scale feature-based 
deformable registration algorithm based on the statistics of the diffusion profile of HARDI data. Besides the advantage of avoiding any predetermined 
models which may not necessarily fit the data, our method registers the diffusion weighted images (DWIs) and allows model fitting after the registration. 
This essentially means that our method can be utilized as a preprocessing step for a wide assortment of available diffusion models. Our method is also 
well suited for clinical applications due to its low computational cost – around 5 minutes on a 2.8GHz Linux machine (without algorithm optimization) to 
register a pair of images of typical size 128 x 128 x 80. The main idea involves extraction 
of statistical features directly from the diffusion profile, which includes mean diffusivity, 
diffusion anisotropy, regional diffusion statistics, and statistic-map-based edges. For each 
voxel, we group all these features into a single feature vector as its structural signature for 
correspondence matching. We employ a hierarchical matching scheme where initially only 
voxels with the most distinctive feature vectors are allowed to guide the registration, 
mitigating matching error caused by voxels with less distinctive feature vectors. Upon 
obtaining a coarse but robust alignment of the images, we allow an increasing number of 
voxels with progressively decreasing saliency to participate in refining the registration. To 
cater for structural patterns of different scales, registration is performed on an image 
pyramid of different scales, starting from a coarse scale and ending with a fine scale.  
METHODS: [Features] Using the Stejskal-Tanner expression [2], the signal attenuation 
value E(g) on a q-space sphere defined by diffusion weighting factor b in the diffusion 
direction specified by unit vector g can be express as: E(g)=exp(-bD(g)). Diffusion profile 
D(g) has a complex structure in voxels with orientation heterogeneity [3]. We leverage the 
wealth of information contained in the diffusion profile by extracting relevant statistics for 
guidance of registration. 1) Mean Diffusivity: Defined as the mean of the diffusivity profile, 
<D(g)>g, where <D(g)> denotes averaging over g, 2) Diffusion Anisotropy: The deviation 
of the diffusivity profile from its isotropic equivalent with the same mean diffusivity, 
sqrt[<(D(g)-<D(g)>g)2> g/<(D(g))2>g], 3) Regional Mean Diffusivity: Defined as the mean diffusivity of a local spatial region <<Dz(g)>z>g, where Dz(g) is 
the apparent diffusion diffusivity at location z in the neighborhood N(x) of x. 4) Regional Diffusion Variance: Measures the deviation of the diffusivities of 
the surrounding voxels from the regional mean diffusivity, sqrt[<<(Dz(g)-<<Dz(g)>z>g)2>g>z]/<<Dz(g)>z>g. 5) Edges of Mean Diffusivity and Diffusion 
Anisotropy Maps: Edge maps computed from the statistical maps by applying a 3D Canny edge detector - important for characterizing and ensuring 
proper alignment of ventricular and white-matter boundaries. [Correspondence matching] The above-mentioned features are collected into a feature 
vector for each voxel as its structural signature for correspondence matching. The following strategies are employed for robust matching: 1) Automatic 
hierarchical landmark selection: A salient-feature priority scheme where automatic landmarks are progressively selected in decreasing saliency 
(according to the feature vector distinctiveness of a voxel) to participate in guiding the registration, 2) Soft-correspondence: where we allow all possible 
candidate correspondence points (with sufficient feature vector similarity to a current landmark point) to be given respective weights, so that in the end 
we can come to a deformation target location based on a final, more informed, weighted decision. 3) 
TPS-Interpolation: A hierarchical thin-plate spline (TPS) [4] interpolation strategy, where we ensure 
well-behaving transformation to properly preserve biologically meaningful topology, first for the 
prominent major structures and then for the finer minor structures. More description of these 
strategies can be found in [5]. [Retransformation] Unlike the diffusion tensors, reorientation alone is 
not meaningful for HARDI data which can resolve multiple fiber directions [6]. In our method, we 
retransform the DWIs by rotating the gradient directions using g’=Fg/||Fg||, where F is a local affine 
transformation estimated from the deformation field. This essentially gives each voxel a new set of 
gradient directions, which can be utilized for estimation of a wide variety of diffusion models after 
registration. 
MATERIALS: 6 adult subjects were scanned using an EPI sequence with b values 1000s/mm2 and 
3000s/mm2 applied in 120 non-collinear directions (NEX=1). 80 contiguous slices with slice thickness of 2mm covered a field of view (FOV) of 256 x 
256mm2 with an isotropic voxel size of 2mm.  
RESULTS: [Registration Accuracy] Selecting one image (from the set of images acquired with b=1000s/mm2) as the template, we registered the other 5 
images onto the template and measured the registration consistency by computing the normalized scalar products of the diffusion anisotropy maps of 
the aligned images with respect to that of the mean image generated by the aligned images. Our method gives a high average value of 0.92 (the highest 
possible value is 1), and is significantly better compared to affine registration (paired t-test, p=0.016). Moreover, compared with the deformation field 
estimated by a recently introduced state-of-the-art DTI registration algorithm called F-TIMER [5], our method, despite its current unoptimized state, also 
yields 1% performance gain. With the addition of more features, our method can potentially outperform F-TIMER more significantly. Fig. 2 demonstrates 
that the outcome produced by the proposed method matches the structures of the template more closely than anisotropy map based affine registration. 
[Noise Robustness] We evaluated the performance of our algorithm with respect to noise by performing the same registration process on the set of 
images acquired using b=3000s/mm2. Despite the decreased SNR, registration performance of our method, as measured by the normalized scalar 
product, does not show statistically significant degradation (paired t-test, p=0.55).  
CONCLUSION: We have proposed a fast multi-scale deformable registration algorithm for HARDI. Our method does not impose any model and can be 
utilized as a spatial normalization preprocessing step for a wide assortment of models. 
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