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INTRODUCTION: Diffusion Tensor Imaging (DTI) and its successor High Angular Resolution Diffusion Imaging (HARDI) are emerging MRI techniques for 
depicting in-vivo white brain matter anatomy and connectivity. HARDI and its ability to resolve more complex neural structures where DTI undoubtedly fails (i.e. 
crossing voxels) is thriving with new discoveries, but validation is still problematic. There is a wide range of utilizations of DTI and HARDI: from depicting the local 
structure of the probability density function of the water molecule displacement, fiber tracking, segmentation, etc. and the indispensable regularization schemes for the 
noisy local and global structures. However to apply any of the above-mentioned methods in a clinical setting, thorough validation is needed. The lack of knowledge 
about ground truth in brain white matter, leads to developments of artificial software images and the use of fiber phantoms. To our knowledge, there are two wide 
spread methods for creating artificial DWI data: the multi-tensor model and calculations based on the restricted diffusion inside a cylinder [1].  
AIM: The goal of the present work is to validate DTI and HARDI software phantoms, in regions of either crossing fibers either single fiber bundles, in relation to 
measured phantom data [2] and in vivo data from human brain, acquired with identical parameters. Additionally, we address the noise issue, in DW-MRI, by applying 
Rician noise with realistic SNR, as calculated from the real data. Knowledge of the behavior of the synthetic data can improve the data modeling and processing and 
advance the employment of DTI and HARDI in clinical applications. 
DATA: Multi-tensor (MT) model used in [3,4] and Soderman’s (S) model [1] used in [5] for two 
fiber bundles crossing under 30 ̊, 50 ̊ and 65 ̊ were implemented in Mathematica. For the MT model 
we take the proportions of both fibers to be equal in the crossing areas, and the eigenvalues for each 
simulated tensor to be [300,300,1700]x10-6mm2/s. For the S model we use the same parameters for b 
value, Δ and δ, from the MRI acquisition protocol, and we average the signal values in the crossing 
areas. Both models use the same gradient sampling scheme as in the MRI scans of the in vivo and 
hardware phantom (#vols(#dirs): 132(120), 80(72) directions, each at b values of 1000, 2000, 4000 
s/mm2) and add Gaussian noise to the real and complex part of the signal with realistic SNR 
corresponding to the used b values (15.3, 13.3, 11.9 respectively). For the in vivo data we select a 
region of corpus callosum as linear part and known crossing between corpus callosum and centrum 
semiovale. 
The software phantoms were generated in a synthetic dataset creation tool developed in 
Mathematica. The different fiber bundles in the volume are parametrically defined by specifying the 
centre line of the bundle, seen as a cylinder with a given radius. In each voxel of the volume, the 
respective fiber(s) orientation(s) is taken in order to simulate the respective signal attenuation. S 
model is of higher computational complexity than the MT model. In Mathematica, the signal 
attenuation for S model, 132 directions, n=1000, m=10 and k=10, requires approximately 30 minutes 
to compute, in a Tyan VX50 with 4 Dualcore Opteron 2.2Ghz CPU and 64GB of RAM. The MT 
model requires approximately 1 minute. This tool establishes an easy to use framework to generate 
datasets by simply defining lines by their parametric equations. As an example, this framework was 
also used to generate datasets for geodesics studies where U shaped fiber bundles, with torsion, are 
of great interest. 
ANALYSIS: We model the HARDI data with Q-ball imaging and include Laplace Beltrami smoothing with λ =0.006 as in [4]. We apply wide range of DTI and 
HARDI scalar measures on the four different types of data. We also quantify the angular difference of the simulated linear direction and estimated main eigenvector in 
the DTI analysis, as well as the angular error and the standard deviation of the simulated and recovered ODF’s angle. 
RESULTS: In Fig.1 the average normalized signal values for the analyzed voxels in the different 
datasets in the linear and crossing part are summarized. Signal decay (as to be expected) with 
increasing b value is observed in most of the cases, and the signals of the S model converges towards 
the MT model at high b values. For clarity and simplicity, Fig. 2 displays the results of the average 
DTI and HARDI scalar measures for b equals 1000 and 4000 s/mm2 only, b values which best depict 
the data’s properties according to the used model. Given that the results for 80 and 132 gradient 
directions were essentially the same, we present only the latter and only the datasets with 65 ̊of 
crossing fibers since qualitatively they are the most similar to the selected region from the in vivo 
data. In [1] the signal for a crossing voxel is obtained by adding the contribution of both fiber 
populations. The results of the S model with added signals are not presented since they give too 
distinct results. For the HARDI measures we use only 4th order of the Spherical Harmonics 
coefficients calculated with the Q-ball model. The bolded results in Fig. 2 are the ones most similar 
to the real data.  We observe similarity between the real and the MT model results. The results from 
the S model become similar to the in vivo ones at high b values, which can be useful in HARDI 
analysis, but for DTI analysis we recommend the MT model. 
DISCUSSION&CONCLUSION: Analysis of different artificial DWI phantom data compared to 
real data is presented. Two different gradient sampling schemes and three different b values, 
applicable in clinical setting, were used. In most of the cases, the MT model exhibits similar 
behavior to the in vivo data. Another point in favor is its simplicity and low computational costs, 
which all together recommend it as a good choice for software synthetic generation. The results of 
the S model converge towards the ones from the MT and in vivo data for higher b values. The 
qualitative results (see Fig. 3) suggest that the noise level for the selected b values is much lower in 
the S and MT model than for the scanned data. Caution should be taken here, since only one specific 
region of crossing in the in vivo brain was analyzed and these results might vary in other selections. 
Future work will address different range of acquisition parameters and different selections of regions 
from in vivo data. The S model is frequently used for rat studies with high-field pre-clinical scanners, 
which allows for a significantly shorter δ as with a clinical scanner. Future work should investigate 
this type of real data and compare the behavior of the S model.  
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F
igure 3. Q-ball glyphs with 4th order of Spherical Harmonics 
representation for the different datasets. 

 

Fi
gure 2. Summary of DTI and HARDI measures. 

Figure 1. Average normalized signal values and standard
deviations. 
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