
Fig. 1: CV between coils of noise power σn
2 for different acceleration rates 

from an 8 coils acquisition, GE Signa 1.5T EXCITE  scanner, FSE Pulse 
Sequence, TR=500 ms, TE= 13.8 ms, matrix size= 256x256, FOV=20x20 
cm, slick thickness= 5 mm. 15 ACS lines are considered for weights 
determination. 
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Fig. 2: Relative errors in the PDF for the non-central Chi squared 
approximation, as a function of the CV of the noise power at each 
coil. Curves are parametrized depending on the SNR. Systems with 8 
(left) or 12 (right) receiving coils are considered. 
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Noise in Parallel Imaging 
Parallel MRI (pMRI) techniques extended the applicability of multiple-coil systems by increasing the acquisition rate via subsampled acquisitions of the k-space data. 
Many reconstruction methods have been proposed in order to suppress the aliasing and underlying artifacts created by the subsampling. Dominant among these are 
SENSE and GRAPPA. One of the effects in accelerated pMRI acquisitions is a significant change in the noise model, which depends on reconstruction scheme. From a 
statistical point of view, it is known that, if no subsampling of the k-space is done, the composite magnitude signal from several coils can be modeled as a non-central 
Chi distribution [Const97]. When k-space is subsampled, the noise power in-fact varies across the reconstructed image, and yet (maybe?) different for each receiving 
coil. Depending on the way the information from each coil is combined (i.e, depending on the reconstruction method), the statistics of the image may no longer follow 
the non-central Chi statistics.  In SENSE, for instance, noise in the x-space is known to be Rician but non-stationary, i.e. the noise power varies from point to point 
[Thumb07]. Some authors suggest that GRAPPA-reconstructed images may follow a non-central Chi distribution [Thumb07], but no thorough study has been done. 
The great importance of the characterization of noise statistics in MRI has been extensively reported in literature. Many filtering, noise estimation or diffusion tensor 
estimation methods for conventional (non-parallel) MRI rely on the Rician noise model. However, during the last years some techniques have been developed assuming 
a non-central Chi distribution of noise. As an example, in [TV09] authors prove that the Weighted Least Squares method used in DTI to estimate the diffusion tensor is 
also valid under the non-central Chi assumption. 
In [Breuer09] authors present a novel g-factor derivation for GRAPPA, and the variance of noise in each coil calculated as 

 
(1) 

As a consequence, the variance of noise in each coil will be Gaussian but non-stationary. If the reconstruction is made using Sum of Squares (SoS) [Const97] the 
composite magnitude image will follow a non-central Chi distribution only if the variance of noise in one pixel is the same for all coils, and no correlation exists 
between them. We have found that in practice, This is not the case; the non-central Chi model does not hold in general for GRAPPA reconstructions. However, under 
certain conditions (which we present below?) the variance of noise is nearly constant for all positions and coils, so a non-central Chi model may adequately fit the data, 
like the Rician model does for conventional MRI.  
 
Non-central Chi model in GRAPPA: experimental results 
Here we present an experiment supporting this claim. Assuming a simplified model in 
which the variance of noise in the k-space is originally the same in all the coils, and no 
correlation exists, then Eq 1can be reduced to give the power of noise in each coil as 
σk

2(x)= σn
2 |Ω|Σl |Wkl(x)|2. From the definition of the g-factor in each coil gk(x), 

[Breuer09]?, it is trivial to show the following relation between its Coefficient of 
Variation (CV) and that of σk

2(x) (power of noise in each coil): 
CV{gk(x)2}=CV{σk

2(x)}. So the study of the CV of gk(x)2 is equivalent to the study of 
the CV of σk

2(x), but the former is easier to interpret. In Fig. 1 the spatial map of the CV 
is depicted for a pMRI acquisition with simulated acceleration, for different acceleration 
rates. From the image one can extract two main conclusions: 
1. Although the variance of noise varies with x, the spatial change/gradient/fluctuation is rather slow; in the worst scenario, a certain local homogeneity can be 

assumed that assures a good behavior of neighborhood-based filters. 
2. If there is no acceleration (R=1), then CV=0. As the acceleration rate increases, the values of the CV of noise between coils are initially low, but grow larger 

proportional to the acceleration rate. At high acceleration rates, the final image will differ from the non-central Chi model. 
Following, we study the variation of the noise power across the receiving coils. The analysis in terms of the CV is used to characterize whether or not a non--central Chi 
model can be accurately fitted in each particular situation. To that end, the following (relative) Mean Squared Error (rMSE) is measured  

 

(2) 

By virtue of Parseval's theorem, it may be written in terms of the characteristic functions (CF) 
of both distributions: GXL is the CF from the real distribution of the composite magnitude 
image obtained by SoS (without the square root, to simplify the analysis ), and ĞXL is the CF of 
an equivalent non-central Chi squared. This error is calculated and plotted in Fig. 2 as a 
function of the CV of σn

2 for different SNR. 
Consider the range of CV values given by the brain data sets in the previous experiment (Fig. 
1): for R=2 and R=3 CV is under 0.5. The relative errors are practically null for all SNR and 
coil configurations in Fig. 2.  Generalizing this result, it may be concluded that the non--central 
Chi model may be assumed for GRAPPA reconstructed images of the brain without any loss of 
generality. On the other hand, for higher values of the CV, the error in the approximation 
rapidly increases. In particular, for values ranging from 1.0 to 1.4, the error would be 
appreciable even for relatively high SNR. For L=8 receiving coils, and SNR ranging in [2,4] (which may be quite realistic in diffusion weighted images), the relative 
error can be over 1%. For high SNR, both the true PDF and the non-central Chi squared approximation tend to a Gaussian, so the error remains small. 
Conclusions 
The noise distribution in each coil after GRAPPA reconstruction is known to be Gaussian and non-stationary (i.e. spatially dependant), and correlation exists between 
coils. As a consequence, a non-central Chi is not an adequate noise distribution model for the final composite magnitude image. However, the non-central Chi model 
can be used as an approximation under certain realistic assumptions: the correlation between coils is small and the CV of the power of noise between the coils is small.  
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