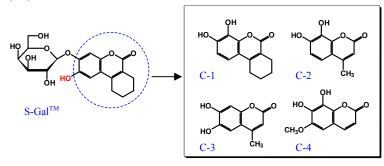
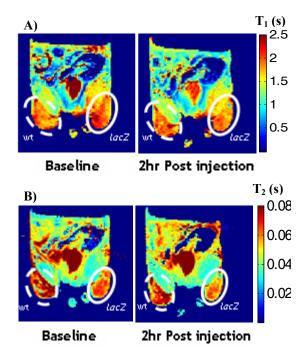
A novel class of S-GalTM analogs as ¹H MRI LacZ gene reporter molecules


P. K. Gulaka¹, V. D. Kodibagkar^{1,2}, J-X. Yu², and R. P. Mason^{1,2}

¹Biomedical Engineering, UT Arlington and UT Southwestern Medical Center at Dallas, Dallas, Tx, United States, ²Radiology, UT Southwestern Medical Center at Dallas, Dallas, Tx, United States


Introduction: Extensive implementation of gene therapy as a therapeutic strategy for cancers has been hampered by difficulties in quantitatively assessing the success of gene transfection and longevity of gene expression. Therefore development of non-invasive reporter techniques based on appropriate molecules and imaging modalities may help to assay gene expression [1,2]. We have evaluated a range of S-GalTM analogs (Fig 1) as novel ¹H MR *lacZ* gene-reporter molecules *in vitro* and have identified C3-GD as an optimal agent for *in vivo* studies.

Materials and Methods: *In vitro* measurement of T_1 and T_2 of the developed agents was performed at 37°C using a 4.7 T horizontal bore MR system. Each sample contained 15mM Agent + 5mM ferric ammonium citrate (FAC) in agarose with or without 5 units of β-gal enzyme. Nude mice (n=4) implanted with subcutaneous MCF7 (wild type) and *lacZ* transfected MCF7 tumor cells were used to perform the *in vivo* study. A spin echo based pulse sequence was used to quantify the T_1 & T_2 values of the tumor slices. Following baseline imaging, 25μl of a solution with 15 mM C3-GD and 5 mM ferric ammonium citrate (FAC) in water was injected intra-tumorally using a fine needle into each tumor. T_1 & T_2 weighted images were acquired at 1 and 2 hours post injection.

Results and Discussion: In the presence of ferric ions (Fe^{3+}) , the agent is cleaved by beta-galactosidase encoded in the *lacZ* gene, and forms a paramagnetic iron chelate.C3-MGD (C3 mono galactoside) and C3-GD (C3 di-galactoside) showed pronounced T_1 and T_2 effects in the presence of β-gal in agarose samples. Due to the better solubility of C3-GD in water, it was used for *in vivo* studies. Following intra tumoral injection of C3-GD + FAC, the MCF7/ *lacZ* tumors showed statistically significant changes in T_1 values (from 1.810±0.16s to 1.515±0.20s) & T_2 values (from 0.049±0.007s to 0.040±0.008s) (Fig 2A) after 2hours whereas the MCF7 (wild type) tumor showed minimal changes in T_1 & T_2 values (Fig 2B) in a representative slice under the same experimental conditions. Our results suggest that C3-Gd is a promising novel Fe-based 1 H MR *lacZ* gene reporter molecule.

Figure 1: Structure of commercial colorimetric lacZ gene-reporter, S-galTM. C1-4 are analogs of the product of cleavage of S-galTM by β-galactosidase.

Figure 2: In vivo lacZ gene reporter activity of C3-GD. A representative MRI slice of a nude mouse with wild type MCF7 tumor (left - dotted) and lacZ transfected MCF7 tumor (right - solid) are shown. A) T_1 maps and B) T_2 maps.

Acknowledgements: This research was supported by NCI R21 CA120774, SAIRP U24 CA126608 and BTRP P41-RR02584.

References:

- 1. Nature Biotechnol. 2000; 18:321.
- 2. NMR Biomed.2008; 21:704.