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INTRODUCTION 
The severe health implications of trans-fatty acids are well-known. Increased 
consumption of these fats leads to increased risks of coronary heart disease, 
diabetes, cancer, liver dysfunction, and Alzheimer’s disease (1). Accumulation 
of trans-fats results from consumption of partially hydrogenated oils and fats in 
dairy products and meat; trans-fats constitute 2-3 % of the total caloric intake in 
US (2).  Characterization of trans-fats in ex vivo samples is typically done by gas 
chromatography or high resolution 13C NMR (3) but non-invasive detection of 
trans-fats in humans or rodents has not been reported. Here, we report non-
invasive detection of trans-fats in human subcutaneous fat by 13C NMR at 7T.  
 
METHODS 
All spectra were acquired on a whole-body 7T scanner (Achieva, Philips 
Medical Systems, Cleveland, OH, USA) using a partial volume human calf coil 
operating in quadrature for both 1H and 13C. For the phantom experiments, oleic 
acid (cis 18:1, n-9), or elaidic acid (trans 18:1, n-9) (Nu-CheckPrep, MN, USA) 
were dissolved in chloroform (1.75 M) in a 10 mL glass vial. Proton spectra 
were acquired using a TE-averaged STEAM sequence with 6 TEs: 18 to 21 ms, 
TM 15 ms, TR 3 s. Carbon-13 spectra of phantoms were acquired by averaging 
128 non-selective FIDs using WALTZ-16 decoupling with a 18 μT proton pulse 
centered at 1.3 ppm and NOE (10 μT at 5 % duty cycle and a mixing time of 1.5 
s). To avoid power limitations while preserving spectral resolution, the 
decoupling was performed only during the first 20 % of the 630 ms acquisition 
time. All human experiments (n = 20) were performed using a protocol approved 
by the local IRB. For human 13C studies, TR was 8 s, NSA 32, for a total scan 
time of 5 min. The average power experienced by each volunteer varied from 
10-18 W depending on loading of the coil.  
 
RESULTS AND DISCUSSION 
The phantom proton spectra of cis- and trans- oleic acid are nearly identical 
(Fig.1) with the two biggest differences being in the methylene protons α to C=C 
(cis 2.03 vs. trans 1.98 ppm;  δ = 15 Hz) and in the methine protons (cis 5.36 vs. 
trans 5.39 ppm;  δ = 9 Hz). However, given a typical in vivo shimming of 20 Hz 
and given the expected percentage trans-to-cis of about 6 %, these δ differences 
are below the resolution detection limit. In contrast (Fig.2), the allylic carbons 
(alpha to C=C, α =) display substantially different chemical shifts (cis 27.18 vs. 
trans 32.59 ppm; δ = 406 Hz; 5.41 ppm). In addition, both the cis and trans 
allylic resonances do not overlap significantly with other resonances. The 
double-bonded carbons (130 ppm region) had a δ (trans-cis) = 26 Hz which can 
be resolved in phantoms (data not shown) but only appear as a small shoulder on 
in vivo spectra. 13C spectra from two volunteers, one on a Mediterranean style 
diet vs. another on a Western style diet, are compared in Fig. 3. The trans-allylic 
peak at 32.78 ppm is easily detectable in the volunteer on a Western diet but 
could not be detected in the volunteer on a Mediterranean diet.  A fit of the 
spectrum using a Voigt lineshape gave a trans : cis ratio = 4.4 %, consistent with 
ex vivo reports (4). The small difference in the chemical shift assignments in vivo 
and in vitro is probably due to differences in the “solvent”, which is fat/water in 
vivo and chlorophorm in vitro. Note however that the δ (trans - cis) differs by 
only 0.01 ppm in vivo vs. in vitro. This method should prove useful for routine 
measures of trans-fats in humans on various diets. 
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Fig.2. Substantial difference, δ = 5.41 ppm, seen in the 13C spectrum 
of trans- vs. cis- oleic acid. 

Fig.3. Assignment of signals from trans and cis carbons α to the double bond. An 
identifiable trans peak is seen in a healthy volunteer on a Western-type diet, 
whereas no trans peak can be seen in the volunteer on the Mediterranean diet.
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Fig.1. Nearly identical proton spectrum of trans- vs. cis- oleic acid. 
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