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Introduction: While Tissue Phase Mapping (TPM) is a well-established technique to assess regional cardiac function in humans [e.g. 
1,2], only one group has reported in the literature on the application of this technique in mice (e.g. [3-5]), using bright-blood contrast. 
However, it is well recognized that TPM in humans (at lower magnetic field strength) requires suppression of the dominant blood sig-
nal in order to provide an accurate measurement of myocardial velocities [1,6]. Blood suppression has also been shown to improve 
image appearance in tagging of mouse hearts [7]. Black-blood contrast necessitates the application of dedicated blood suppression 
techniques (i.e. double inversion or saturation), typically applied at the end or the beginning of the cine-train, which is omitted for 
bright-blood contrast. Therefore, bright-blood techniques provide extended coverage of the cardiac cycle. We sought to directly com-
pare black-blood versus bright-blood contrast and the impact on measured velocities in phase contrast MRI in murine hearts at 9.4T. 
Materials & Methods: TPM experiments were performed in 6 C57BL/6 mice (male, 23.6 ± 1.2 g) on a 9.4T VNMRS DirectDrive 
MR-system (Varian Inc, USA), equipped with 1 T/ gradient system and a quadrature driven birdcage coil (id 33mm). A mid-
ventricular slice in short axis view was acquired using a double-gated multi-frame gradient echo sequence (128x128, FOV 25.6x25.6 
mm, α=10°, NAE=2, venc: in-plane – 6 cm/s; through-plane – 8 cm/s). Black-blood contrast was achieved by two 4 mm saturation 
slices, applied 4.5 mm above and below the imaging slice, followed by a crusher gradient (total duration of the black blood module: 
7.5 ms). Bright-blood images were acquired with the black-blood module turned off, but otherwise identical acquisition parameters. 
Imaging was repeated in 3 additional mice (male, 31 ± 4 g), to assess reproducibility of TPM with black-blood contrast. Data post-
processing was performed using customized software programmed in Matlab. After contour segmentation and a correction for transla-
tional motion components, the measured in-plane velocities were transformed into an internal polar coordinate system positioned at the 
center of mass of the left ventricle. Hence, motion parameters are described in terms of radial v_r, rotational v_phi and longitudinal 
v_z velocities. Correlation coefficients were calculated by correlating mean radial velocities in 24 angular segments with the global 
velocity time course, which is an important parameter identifying regional myocardial dynamics [8]. 
Results: Figure 1 shows a plot of the mean velocities averaged over the whole LV segmentation mask obtained from the black blood 
data for all time frames versus the bright-blood velocities. Linear regression analysis yielded a functional dependency of y=0.80x + 
0.049, R=0.97 for v_r, y=0.77x - 0.01, R=0.81, for v_phi, and y=0.84x + 0.06, R=0.87, for v_z, respectively. An identical analysis for 
black-blood vs. black-blood velocities as a measure of reproducibility 
of the technique in the three additional mice yielded y=1.06x – 0.03, 
R=0.99, for v_r, y=0.97x - 0.01, R=0.98, for v_phi, and y=0.99x + 
0.02, R=0.97, for v_z. Figure 2 depicts the correlation coefficient plots 
for the radial velocities for (a) the black-blood and (b) the bright-
blood acquisition of a normal mouse. The apparent relative impair-
ment (i.e. greater variability of correlation coefficients) visible in the 
bright-blood data Fig. 2b is erroneously caused by blood flow rather 
than by a (patho-) physiological condition. 
Discussion: Two out of six mice showed considerable flow-related 
artefacts in the motion-encoding bright-blood acquisitions, which 
were not present in the black-black scans. Excluding these two mice 
from the regression analysis still did not give the same reproducibility 
in myocardial velocities as the repeated black-blood scans (data not 
shown). Importantly, bright-blood contrast was found to impact on 
both, absolute velocities and motion pattern as demonstrated by the 
correlation coefficient plots. This is of relevance particularly for dis-
eased hearts, which may have less stable heart rates during data acqui-
sition, and may therefore be more prone to these artefacts. 
Conclusion: This study therefore suggests that black-blood contrast 
may yield more stable and reproducible results for regional functional 
analysis for mouse hearts. 
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Figure 1: Linear regression analysis for myocardial ve-
locities obtained from black-blood vs bright-blood TPM-
data. 

Figure 2: Correlation coefficients of mean radial veloci-
ties in 24 angular segments for a) black-blood and b) 
bright-blood contrast. Phase encoding was applied verti-
cally in both cases. 
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