
 
Figure 1. Spatial maps of five defined networks. 

 
Figure.2 Network interaction 
patterns during resting state. 

       Movie watching vs resting     Finger tapping vs resting 
 Connections Changes p-value 

(uncorre
cted) 

Connections Changes p-value 
(uncorr
ected) 

NCC MS-V Decrease 0.012 MS-V Decrease 0.039 
NPC MS-V Decrease 0.016 MS-V Decrease 0.002 

D-MS Decrease 0.027 
L-MS Increase 0.016 

Table.1 Observed changes associated with different brain states.  
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Introduction 
The brain is intrinsically organized by functional networks. However, most of the brain functional imaging studies thus far have largely focused on the interaction of 
different brain regions instead of among different brain networks. In this study, a multivariate approach was developed to discern the interaction of five predefined brain 
functional networks, including the default (D), fronto-parietal control (FPC), motor-sensory (MS), visual (V), and language (L) networks during resting, movie 
watching and finger tapping, respectively. The ability to elucidate the interaction of different brain networks and assess the dynamic perturbations of their interactions 
under different cognitive statuses should complement our understanding of brain functional interaction on a regional level and offer a more comprehensive insight into 
how the brain works at a different scale.   
Methods 
19 healthy subjects (age 25~33, 7F) were recruited in this study. Informed consent was obtained from all 
participants. T1 images were acquired with TR=1820ms; TE = 4.38 ms; inversion time = 1100ms; 144 slices; 
and voxel size = 1x1x1mm3.  For the rfcMRI studies, a T2*-weighted sequence was used with TR = 2sec, 
TE = 32 ms; 33 slices; and voxel size = 4x4x4 mm3. This sequence was repeated 150 times for each 
experimental condition, including resting, continuous finger tapping and watching a movie clip. After time 
shifting, rigid body registration, spatial smoothing (6-mm full width at half maximum Gaussian kernel) and 
low pass filtering (<0.08Hz), the rfcMRI data was normalized to the MNI template using the transformation 
field acquired from T1 nonlinear registration.  Subsequently, whole brain parcellation (90 ROIs) was then 
achieved usin the prior labeled atlas.  

Principal component analysis (PCA) was followed by independent component analysis (ICA) to obtain a set of 29 
aggregate independent components. The functional network definition is based on the template matching method [1]. 
Specifically, the templates containing the bilateral pre/post central gyri, bilateral occipital gyri, bilateral superior temporal gyri, 
bilateral anterior cingulate gyri/anterior prefrontal cortex, and bilateral medial superior frontal/bilateral posterior cingulate were 
used to find the best matched independent compoents for the MS, V, L, FPC, and D networks, respectively. Spatially 
unconnected regions (Z>1) within each network were extracted as individual ROIs and the median time course of each ROI was 
calculated for network analysis.  

To quantify network level interaction, a canonical correlation [2] measure between two multivariate vectors was used. Note 
this network correlatio (NCC) ranges between 0 and 1 with 0 indicating no dependence and 1 indicating full dependence 
between these two sets of variables.  Partial correlation is a measure of correlation between two random variables, while 
controlling for a set of other variables, with which one could determine what the correlation would be if the influence from the 
“mediator” has been removed.  For univariate statistics, partial correlation between two random variables x and y controlling for another set of independent covariate z 
can be computed as the Pearson’s correlation between the residuals 

xε and
yε from two linear regression 

equations
xZxx εβ ++= 10

and 
yZyy εβ ++= 20

. 

Since the primary focus of this study is to depict correlation between 
two sets of variables, the above computational procedures need to be 
generalized to accommodate the multivariate property of this problem. 
For two sets of vectors T

mxxX ],...,[ 1= , 
T

nyyY ],...,[ 1= , the previous two equations can be written as 

xEZXX +Β+= 10
; 

yEZYY +Β+= 20
, where 

xE and 
yE  are  the residual vectors of X and Y, respectively, after regressing on the variable set of Z. Subsequently, the canonical correlation coefficient of 

xE and
yE  can be calculated to represent the network partial correlation (NPC) between the two sets of variables (networks) X and Y. After calculating both NCC 

and NPC, the significance of each network-level interaction was tested using a surrogate data approach [3]. To detect possible perturbations across three different 
cognitive states, paired t-test was conducted on the Fisher’s Z transformed correlation/partial correlation values to find significant interaction changes.  
Results 
The spatial maps of the five defined networks are presented in Fig.1. For resting condition, the averaged group correlation matrices (upper panel) and the corresponding 
spring embedding representations (lower panel) are shown in Fig. 2. The colors of the edges indicate statistically different grouping based on Tukey’s method (p<0.05). 
Here, we define the L, MS and V as the outer-directed networks since they mainly interact with the external world.  In contrast, we consider the D network as the inner-
directed network. With NCC, the FPC-L exhibits the highest connection strength and with the exception of FPC-D, the interactions between the D and the outer-
directed networks (D-L, D-MS, and D-V) are ranked the lowest, suggesting a minimum interaction between functionally dissimilar networks. Conversely, the 
interaction among the outer-directed networks is strong. Furthermore, the relatively strong interaction pattern of FPC-D together with the strong interactions between 
FPC and the remaining networks seem to suggest the “bridging” role of FPC network. The NPC interaction patterns (Fig. 2b) appear similar to that of NCC: the FPC-L 
interaction is ranked as the highest (red) and the interaction between the inner- and outer-directed networks remains minimal. However, the interactions of FPC-MS, 
FPC-V, L-MS, and L-V, which are ranked at the middle (green) using NCC now become the lowest (blue) using NPC suggesting noticeable mediation effects.  
           For the exploration of possible perturbations during differtn brain states when compared with resting, movie watching led to a significantly reduced MS-V 
interaction while finger tapping resulted in significantly reduced interaction of MS-V and MS-D and increased interaction of MS-L as shown in Table.1.   
Discussion 
In this study, using a newly developed multivariate approach, we demonstrate that the five pre-defined functional networks remain highly interacted during the resting 
condition. Our results also demonstrate that there is a minimum interaction between the inner- and outer-directed brain networks although the FPC appears to serve as 
the pathway linking the two systems which is independent of the experimental conditions imposed in our studies. In addition, with respect to the resting condition, the 
interaction patterns are modified in the presence of goal-directed tasks; a more remarkable modification is observed during finger tapping than that during passive 
movie watching.  To the best of our knowledge, the newly developed approach represents the first reported results on a direct assessment of brain network interactions 
during resting as well as goal-directed tasks.  
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