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Introduction: Statistical parametric mapping (SPM) is widely used for the statistical analysis of brain activity with fMRI. However, if the general linear model 
employs a fixed form of a canonical HRF, the ignorance of experimental and individual variance can lead to inaccurate detection of the real activation area. A variety of 
data-driven methods, which combine independent component analysis (ICA) with statistical analysis of fMRI dataset, were suggested to overcome the problem, such as 
the `HYBICA’ approach [1] and the unified `SPM-ICA’ method [2]. However, recent study demonstrates that representation of the brain fMRI using sparse components 
is more promising rather than independent components [3]. Also, the real brain fMRI signal may be regarded as a combination of small set of dynamic components, 
where each of them has different signal patterns and sparsely distributed in each voxel. Hence, we employ the K-SVD [4], a powerful sparse dictionary learning 
algorithm, to decompose the neural signal into dictionary atoms with specific local responses. Using the trained sparse dictionary as a design matrix in SPM, we extract 
which signal components contribute to the neural activation. We show the proposed method adapts the individual variation and extract the activation better than 
conventional methods. 
Theory: The general linear model (GLM) model explains the response variable in terms of a linear combination of the explanatory variables plus a residual error term 
as:                                                ௝ܻ ൌ ௝݀ଵݔଵ ൅ ڮ ൅ ௝݀௜ݔ௜ ൅ ڮ ൅ ௝݀ேݔே ൅  ௝  ,                                               (1)ߝ
where ௝ܻ denotes the each observations ݆ ൌ 1, … , a set of ܰሺܰ ,ܬ ൏ ݅ ௜ atݔ ሻ sparsely distributed explanatory variables are denoted by ௝݀௜, andܬ ൌ 1, … , ܰ are 
unknown parameters corresponding to each explanatory variables ௝݀௜. We assume that the measurement is a linear combination of small set of dynamic signals that have 
distinct synchronous temporal patterns, which are originated from activated visual, auditory, motor area and etc, due to the complex brain connectivity. In this model, 
each voxel has sparse contribution from the signals which are localized in a small set of region. In our model, we assume ܦ ൌ ሼ ௝݀ሽ௝ୀଵ௄  are unknown. To extract the 
unknown explanatory variables d୨୧, we employed K-SVD algorithm [4], which is a powerful iterative algorithm for training sparse dictionaries. Here, given a set of 
training signals ܻ ൌ ሼݕ௜ሽ௜ୀଵே , we search the best possible dictionary ܦ ൌ ሼ ௝݀ሽ௝ୀଵ௄  for the sparse representation of the measurement Y as: 

                          ݉݅݊஽,௑ሼצ ܻ െ ܺܦ ிଶצ ሽ,              ݅׊    ݋ݐ ݐ݆ܾܿ݁ݑݏ, צ ௜ݔ ଴൑צ ଴ܶ  ,                                         (2) 
where ଴ܶ is a fixed and predetermined number of nonzero entries and ݔ௜ denotes the i-th column of X. The K-SVD algorithm applies two steps per each iteration. In 
sparse coding stage, we find the best coefficient matrix X for a given dictionary D as:  

  ݉݅݊௫೔ሼצ ௜ݕ െ ௜ݔܦ ,݅׊    ݋ݐ ݐ݆ܾܿ݁ݑݏ            ,ଶଶሽצ צ ௜ݔ ଴൑צ ଴ܶ  ,                                          (3) 
which can be solved using orthogonal matching pursuit (OMP) and etc. Then, in the dictionary updating stage, we change the columns of D sequentially for given ሼx୧ሽ୧ୀଵN . We denote ܧ௞ as the residual for all the N examples when the contribution from the k-th atom is eliminated. Then we select the error columns that correspond to ܧ௞ோ ൌ ܰ ௞ is defined as anߗ ௞, whereߗ௞ܧ ൈ ,௞ሺ݅ሻݓ) ௜| matrix with ones on theݓ| ݅ሻ-th entries, and zeros elsewhere, where ݓ௞ is defined as: ݓ௞ ൌ ሼ݅|1 ൑ ݅ ൑ܭ, ௞்ሺ݅ሻݔ ് 0ሽ. Then, Eq. (2) is rewritten as minimizing צ ௞ோܧ െ ݀௞ݔ௞் ிଶצ . For this, we take singular value decomposition of ܧ௞ோ, and determine ݀௞ and ݔ௞் using the 
best rank-1 approximation. This is repeated until convergence. Finally, the resultant trained dictionary atom ݀௞ is used to the design matrix in GLM model. 
Experiments: The proposed method was applied to a right finger tapping task with block paradigm to evaluate the performance. A 15 sec task period alternated with a 
72 sec resting period was repeated 4 times for each subject followed by an additional 30 sec of rest. The total recording time was 480 sec. A total of 3 healthy right-
handed subjects were examined (mean age=25േ2). A 3.0T fMRI system (ISOL, Republic of Korea) was used to measure the BOLD response. During every 
experiments, the EPI sequence was used with TR/TE=3000/35 ms, flip angle=80°, 35 slices, 4 mm slice thinkness.  
Data analysis: The data were spatially realigned to correct the changes in signal intensity over time which can arise from within-subject head motion. Spatial 
registration and normalization were applied. We only extracted the voxels corresponding to the brain region from 
the 3-dimensional BOLD response measured with fMRI. Then the data was down-sampled at spatial direction to 
decrease the computation time in K-SVD learning. We used a discrete cosine transform basis set with cutoff 
frequency of 1/128 Hz to eliminate unknown global trends, and temporal smoothing using 1.5 sec full-with at 
half maximum of the Gaussian smoothing kernel. Then, we employed K-SVD to the pre-processed fMRI finger 
tapping data. The number of dictionary elements was 50 for subject 1 and subject 2, and 53 for subject 3. 
Maximum coefficients to be used in OMP coefficient calculations was set to 5, and 15 iterations were performed 
for each data. According to the algorithm, the dictionary matrix D was trained and entered to the design matrix. 
The general linear model is then applied to statistically analyze the measured BOLD signal. The restricted 
maximum likelihood estimation of the parameters and inference with F-statistics are then conducted using the 
SPM package. 
Results: We have shown the activation map using trained dictionary by K-SVD. For three subjects, the 
activation maps with ݌ ൏ 0.05 tightly localized on the left primary motor cortex (see Fig 1.(a)). The proposed 
method adapts the individual variation as can be seen in the estimated dictionary in Fig 1.(b). 
Conclusions: In this paper, we proposed the sparse dictionary learning for SPM, which decomposes the 
activation signals into sparse signal atoms. The employment of K-SVD in GLM constructs the data-driven model 
for the brain fMRI analysis. The data-driven design matrix containing the time course of the trained dictionary is 
individually adaptive and extracts the activation better than conventional methods. 
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Figure 1.  (a) Activation maps of three subjects’
fMRI data using design matrices constructed using 
trained dictionaries by K-SVD shown in (b). Red line 
corresponds to the canonical HRF convolved with 
experimental paradigm, and the blue line 
corresponds to the individual HRF extracted using K-
SVD
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