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Introduction. Independent component analysis (ICA) [1] is a useful tool for fMRI data analysis, but it suffers from the intrinsic order ambiguity, which 
makes it tricky to pick up the interested components across different runs and makes a problem of assessing the same or similar components across 
subjects. One solution is to incorporate prior information in the learning process as in the constrained ICA (cICA) [2,3]. However, the original cICA depends 
on a learning rate, which is not easy to be tuned. In this work, we developed a fast and learning rate free cICA algorithm and validated its performance for 
brain activation detection. 
Materials and Methods. CICA can be described as an inequality constrained problem (ICP)[2,3]: maximize an object function )(yϑ , subject to 0)( ≤yq  
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penalty function, and . is the Eucliean norm. The optimal value of 2z can be obtained through maximizing L wrt 2z . With the optima of 2z , μ can be 
updated with: (2) )}(,0max{1 yμμ qkk γ+=+ . Neglecting the last item in Eq 1 and replacing 2z by its optima, we can get: 
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resulting in the following equation: )}('{)}('{2 yxμWxxλW WW qEGEL −=∇−∇= ϑ , which can be further simplified as: 
(4) )}('{)}('{ yxμWxxW qEGE −= since the scaling factor λ2 will be automatically dropped off if we force the weight to be normalized after each iteration 
using the fixed-point concept [1]: (5) WWW /= . In summary, our proposed fixed-point cICA algorithm consists of Eqs. 4, 2, 5 and a deflation process: 
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The FastICA package [1] was modified to implement the algorithm in Matlab (Mathworks, Natick MA) scripts. All input data were centered and 

dewhitened using PCA decomposition. Four signals were generated with the normalized kurtoses of -0.2958, 4.3121, -1.2041, and -0.0422, respectively. 
The 1st source signal was a 1/f noise and its reference was a different 1/f signal. The references for 
the other 3 sources were different from the sources but their spectrums had the same major item 
as their corresponding sources. The mixed data were then separated 100 times using the original 
cICA and the proposed cICA. The aggregate performance index [2], signal-to-noise ratio (SNR), 
and separation time were collected. The proposed cICA was also applied to synthetic fMRI data 
that were generated as in [4] and previously published sensorimotor fMRI data [4].The boxcar 
function defining the activation sessions was used as the constraint for cICA to pick up the task 
related component. Univariate general linear model (GLM) provided in 
SPM5(http://www.fil.ion.ucl.ac.uk/spm) was used to generate the statistical parametric map of the 
activation-baseline contrast. ROC curves were collected from the cICA component map and the GLM t-map as described in [5]. FMRI data (n=17) 
preprocessing was performed using SPM5 based batch scripts [5], including realignment, coregistration, smoothing with an isotropic Gaussian filter 
(FWHM=6 mm), low-pass filtering with a Butterworth filter (cutoff frequency = 1/8 Hz), a high-pass Butterworth filtering (cutoff frequency = 1/128 Hz), 
spatially normalization to the MNI 152 standard brain. CICA was then applied using the design function as the constraint. GLM was also applied to collect 
the statistical parametric maps. A group analysis using the one-sample t-test was finally run on the individual cICA maps and GLM parametric maps.  

Results and discussions 
As listed in the table on the right, the proposed cICA outperformed the original cICA in terms of higher SNR, lower PI, and shorter convergence time for 
separating the 1D synthetic data. These performance differences are due to the less computation burden of the proposed method as compared to the 
original one. The latter depends on a learning rate, which may not be easy to be tuned. In this work, the learning rate was initiated to be 1 and then 
gradually reduced until the learning process converged [1]. 

Fig. 1 shows that the proposed cICA demonstrated a much better sensitivity/specificity performance than standard univariate GLM for brain activation 
detection. This outperformance is due to the multivariate processing property and the source separation property of cICA. Treat each image as a single 
unit, cICA seeks the entire spatially coherent activation pattern as a whole rather than assessing them voxel by voxel separately. Since the spatially 
coherent activation patterns are more robust to noise interference than each single voxel if the noise is spatially independent which is a quite common 
assumption taken in the real MRI field, assessing the patterns as a whole should then gain an increased sensitivity as compared to assessing them 
separately at each voxel.  Moreover, if there is just one Gaussian noise component and the desired component is not Gaussian distributed ICA could give 
a perfect detection to the spatially connected activation, since the spatial noise could be extracted as a separate component. Incorporating constraints in 
the learning procedures, cICA can do a better job by attracting the components to the desired location in the case of multiple local optima. 

Fig. 2 shows the group level brain activation revealed by cICA and GLM from the sensorimotor fMRI. At the same significance level (t=4.67, P=0.05 
with FDR correction), cICA yielded more extended activation clusters in visual cortex and motor cortex than GLM, while GLM revealed more focal 
activations in thalamus (Tha), left insula (lIns), and the supplementary motor area (SMA). The outperformance of cICA in visual and motor cortex is due to 
the same reasons stated above, while the underperformance in Tha, lIns and SMA could be caused by the less coherence of brain activities in these 
regions than in other regions underlying the overall activation pattern. Fig. 3 showed the aggregate correlation coefficients (CC) of the time series between 
lIns, Tha, right motor cortex, and visual cortex. We can see that fMRI time course in left insula has less aggregate correlation than other regions. 
Reference  [1] Hyvarinen et al, independent component analysis, Joh Wiley&Son, 2001, [2] Lu et al., ANIPS, 16:570-6,2000. [3] Lu et al., IEEE TNN, 
2005,16:203-12. [4] Wang et al., NeuroImage, 46:608-615, 2009. [5] Wang et al., MRI, 2008, 26(2): 261-9. 
Acknowledgement  This work was supported by NIH grants NIH grants: R03DA023496, RR02305, R21DA026114, R01DA025906. 

 
 
 
 
 
 
 

cICA 

Algorithms

SNR 
PI 

Time 

(sec) S1 S2 S3 S4 

original 30.26 28.39 33.56 24.36 0.1022 0.2372 

new 30.26 28.39 28.30 22.94 0.1287 0.5068 

 
Fig 1. ROC curves of cICA and GLM for
the synthetic brain activation detection. 

 
Fig 2. Group level statistical analysis results of the sensorimotor
fMRI data. The color window is 4.67-8.
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Fig 3. The mean and standard error of the
aggregate CC of the 4 assessed ROIs for
the sensorimotor fMRI data. 
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