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Introduction. Independent component analysis (ICA) [1] is a useful tool for fMRI data analysis, but it suffers from the intrinsic order ambiguity, which
makes it tricky to pick up the interested components across different runs and makes a problem of assessing the same or similar components across
subjects. One solution is to incorporate prior information in the learning process as in the constrained ICA (cICA) [2,3]. However, the original cICA depends
on a learning rate, which is not easy to be tuned. In this work, we developed a fast and learning rate free cICA algorithm and validated its performance for
brain activation detection.

Materials and Methods. CICA can be described as an inequality constrained problem (ICP)[2,3]: maximize an object function #(y), subjectto ¢(y) <0
and #(y) = 0, where ¢(y) = (¢(»)),9(»,)r9(,, ))T,T(M2 < m) is the function controlling the closeness ofrthe components to the priors, and a correlation
based ¢(y) was used in this work: ¢(y) = & - E{(y )"}, m is the number of components, i#(y) = WW -1, and W is the weight to recover the latent
source s from their mixed version x through y=wx . A widely used #(y) is the sum of negentropy Z:IJ(y‘.)and J(.) can be approximated with
J(y; ):c[E{G(yl.)—G(v)}]z [1], where G is a nonquadratic Eunction and is chosen to be logcosh(.) in this work, V is a Gaussian variable with zero mean and
unit variance. Converting ¢(y) <0 into ¢(y)+z =0 , this ICP can be solved using an augmented Lagrangian function:
(1) L(W,n,z,0) = d(y) - pT(q(y) + zz) - 1/2y| - xrh(y) - 1/2;/||/1(y)||2 , where 1 and pare two sets of Lagrangian multipliers, and yis a scalar
penalty function, and ||||is the Eucliean norm. The optimal value of z? can be obtained through maximizing ; wrtz* . With the optima of z2, p can be

q(y)+22

updated with: (2) By =max{Op, +x(y)} - Neglecting the last item in Eq 1 and replacing z?> by its optima, we can get:
(3) L(W,m,h) = (y) - 1/(2}/)(max2{u + 14(y),0} — |12) - LT(WWT -1). The optimal W can be then approached by setting the derivative of . wrt Wto 0,
resulting in  the following  equation: 20W =V 8-V L =E{XG'(Wx)}-pE{xq'(y)} , which can be further simplified as:

(4) W = E{xG'(Wx)} - pE{xq'(y)} since the scaling factor 2 will be automatically dropped off if we force the weight to be normalized after each iteration
using the fixed-point concept [1]: (5) W = W/HWH . In summary, our proposed fixed-point clCA algorithm consists of Egs. 4, 2, 5 and a deflation process:

W = (WWT)l ‘Wto prevent different weights from converging to the same optima.
The FastICA package [1] was modified to implement the algorithm in Matlab (Mathworks, Natick MA) scripts. All input data were centered and
dewhitened using PCA decomposition. Four signals were generated with the normalized kurtoses of -0.2958, 4.3121, -1.2041, and -0.0422, respectively.

The 1st source signal was a 1/f noise and its reference was a different 1/f signal. The references for

the other 3 sources were different from the sources but their spectrums had the same major item cICA SNR Time
as their corresponding sources. The mixed data were then separated 100 times using the original PI
clCA and the proposed cICA. The aggregate performance index [2], signal-to-noise ratio (SNR), |Algorithms |S1 S2 S3 S4 (sec)

and separation time were collected. The proposed clCA was also applied to synthetic fMRI data
that were generated as in [4] and previously published sensorimotor fMRI data [4].The boxcar |original 30.26 28.39 33.56 24.36 |0.1022 |0.2372

function defining the activation sessions was used as the constraint for cICA to pick up the task
related component. Univariate general linear model (GLM) provided in  |new 30.26 28.39 2830 22.94 |0.1287 |0.5068
SPM5(http://www.fil.ion.ucl.ac.uk/spm) was used to generate the statistical parametric map of the

activation-baseline contrast. ROC curves were collected from the clICA component map and the GLM t-map as described in [5]. FMRI data (n=17)
preprocessing was performed using SPM5 based batch scripts [5], including realignment, coregistration, smoothing with an isotropic Gaussian filter
(FWHM=6 mm), low-pass filtering with a Butterworth filter (cutoff frequency = 1/8 Hz), a high-pass Butterworth filtering (cutoff frequency = 1/128 Hz),
spatially normalization to the MNI 152 standard brain. CICA was then applied using the design function as the constraint. GLM was also applied to collect
the statistical parametric maps. A group analysis using the one-sample t-test was finally run on the individual cICA maps and GLM parametric maps.

Results and discussions

As listed in the table on the right, the proposed cICA outperformed the original cICA in terms of higher SNR, lower PI, and shorter convergence time for
separating the 1D synthetic data. These performance differences are due to the less computation burden of the proposed method as compared to the
original one. The latter depends on a learning rate, which may not be easy to be tuned. In this work, the learning rate was initiated to be 1 and then
gradually reduced until the learning process converged [1].

Fig. 1 shows that the proposed cICA demonstrated a much better sensitivity/specificity performance than standard univariate GLM for brain activation
detection. This outperformance is due to the multivariate processing property and the source separation property of clCA. Treat each image as a single
unit, cICA seeks the entire spatially coherent activation pattern as a whole rather than assessing them voxel by voxel separately. Since the spatially
coherent activation patterns are more robust to noise interference than each single voxel if the noise is spatially independent which is a quite common
assumption taken in the real MRI field, assessing the patterns as a whole should then gain an increased sensitivity as compared to assessing them
separately at each voxel. Moreover, if there is just one Gaussian noise component and the desired component is not Gaussian distributed ICA could give
a perfect detection to the spatially connected activation, since the spatial noise could be extracted as a separate component. Incorporating constraints in
the learning procedures, cICA can do a better job by attracting the components to the desired location in the case of multiple local optima.

Fig. 2 shows the group level brain activation revealed by cICA and GLM from the sensorimotor fMRI. At the same significance level (t=4.67, P=0.05
with FDR correction), cICA yielded more extended activation clusters in visual cortex and motor cortex than GLM, while GLM revealed more focal
activations in thalamus (Tha), left insula (lIns), and the supplementary motor area (SMA). The outperformance of cICA in visual and motor cortex is due to
the same reasons stated above, while the underperformance in Tha, lins and SMA could be caused by the less coherence of brain activities in these
regions than in other regions underlying the overall activation pattern. Fig. 3 showed the aggregate correlation coefficients (CC) of the time series between
lins, Tha, right motor cortex, and visual cortex. We can see that fMRI time course in left insula has less aggregate correlation than other regions.
Reference [1] Hyvarinen et al, independent component analysis, Joh Wiley&Son, 2001, [2] Lu et al., ANIPS, 16:570-6,2000. [3] Lu et al., IEEE TNN,
2005,16:203-12. [4] Wang et al., Neurolmage, 46:608-615, 2009. [5] Wang et al., MRI, 2008, 26(2): 261-9.
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Fig 1. ROC curves of cICA and GLM for Fig 3. The mean and standard error of the
the synthetic brain activation detection. Fig 2. Group level statistical analysis results of the sensorimotor aggregate CC of the 4 assessed ROIs for
fMRI data. The color window is 4.67-8. the sensorimotor fMRI data.
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