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Purpose of Study 
 An increasing number of studies of functional connectivity within the brain are being performed using MRI, and such work has shown the potential to both better 
understand the healthy brain [1] and diagnose diseases of the brain [2].  These techniques are based on the blood oxygenation level dependent (BOLD) signal and areas 
of the brain known to be connected anatomically have been shown to have voxel time courses which have higher correlation coefficients than others [3]. 
 Seed-based correlation is the method most commonly used to analyze functional connectivity data [3], but requires user input in selecting the seed region, which 
can introduce bias.  Independent component analysis is a data-driven approach that can identify functional networks [4], but the components it produces are unranked 
and can be difficult to interpret.  Due to these limitations, it would be beneficial to develop a data-driven algorithm which does not require user input and produces 
easily-interpreted results.  Hierarchical clustering based on cross-correlation values between individual voxels is a promising candidate.  This work examines the use of 
hierarchical clustering to characterize the functional connectivity of the sensorimotor network in the rodent.  Resting state fluctuations similar to those observed in 
humans have also been detected in rats [5], and the relatively simple structure of the rat cortex facilitates evaluation of the analysis method. 

Algorithm 
 In an image of size N x N, K slices, a cross correlation matrix of size (K*N2)2 is created where 
the entry at row x and column y represents the correlation coefficient calculated between the xth and 
the yth voxels.  The first group is formed including only the pair of voxels with the maximum 
correlation coefficient.  Then further groups are formed in an iterative manner as follows; The pair 
of voxels with the next highest correlation is considered.  If one of the pair has already been added 
to a group, then the other voxel in that pair is also added to that group.  If both voxels have already 
been added to different groups, then those two groups are merged into a single larger group.  If 
neither voxel is in a group, then a new group containing only the pair is created.  Repeat. 
 While this algorithm is capable of forming groups, it has hundreds of iterations due to the 
hundreds of voxels in the image, and eventually will merge all voxels together into a single group.  
Because of time constraints, this study stopped forming groups at a correlation value of 0.65, chosen 
because most of the cortex was classified by that point.  Because there were hundreds of merges, a 
method was needed to determine when a significant merge between two large groups was occurring, 
to be able to determine the significant large groups at varying levels of correlation.  Therefore only 
merges of two groups, where each group was at least 6 voxels in size and the smaller group was at 
least 20% of the larger group, were considered.  This ensured that small groups due to noise weren’t 
considered, and that insignificant additions to an existing large group weren’t considered.  This 
algorithm was implemented in MATLAB. 
Computational Considerations 
 To reduce the size of the cross correlation matrix, rather than using all N2 voxels, only voxels 
which have amplitude indicating that they contain anatomical data are used.  As not all voxels are 
used, 3 extra columns are added to the cross correlation matrix to indicate each voxel’s x, y and slice 
number position.  In addition, as the correlation coefficient operation is commutative, only the upper 
triangular half of the correlation matrix need be calculated. 
 The limiting step of the algorithm is determining the maximum within the cross correlation 
matrix, to determine the next pair.  If the maximum is calculated in the normal MATLAB manner the 
algorithm will take on the order of (K*N2)4 operations 
to complete.  To reduce this slow computation the cross 
correlation matrix was sorted beforehand using a binary 
sort, on the order of (K*N2)3log2(K*N2) operations, and 
reducing the order to only (K*N2)2 operations. 

 These considerations reduced run time from several days to less than 1 hour for all data sets tested. 
Results 
 The algorithm was run on data collected from 6 rats anaesthetized with medetomidine, TR 500 ms, TE 20 ms, matrix 
size 64 x 64, field of view 1.92 cm x 1.92 cm, 4-5 2 mm thick slices centered over primary somatosensory cortex (SI), 
1200 repetitions, as done in [5]. 
 It was observed that groups formed corresponding to the anatomical features of the left and right lateral primary 
somatosensory cortex (SI), the left and right lateral secondary somatosensory cortex (SII), and a dorsomedial region likely 
to correspond to the motor cortex.  Based on its criteria for determining significant events, the algorithm found two large 
groups merging to form a SI group in 3 rats, two large groups merging to form a motor group in 4 rats, left and right SI 
groups merging in 4 rats, SI and motor groups merging in 4 rats, and two large groups merging to form bilateral SII in 2 
rats.  Each event and the correlation coefficient at which it occurred is shown in figure 2.  Figure 1 shows a typical 
observation; groups form separately in SI, SII and the motor area.  SI and SII merge, then merge with the motor area. 
Discussion 
 This study demonstrates that an algorithm can be created which constructs anatomically relevant groups from 
functional connectivity MRI data in a repeatable manner across subjects.  This algorithm fulfills the goal of not requiring 
anatomical information to be specified, and partially fulfills the goal of not requiring a correlation threshold to be pre-
determined, though one was set due to time constraints. 
 This algorithm could allow detection of networks in human data with minimal or no manual input, however despite efforts discussed above this algorithm is still 
computationally intensive.  Therefore it might be necessary to group voxels of high correlation in human data prior to execution of this algorithm. 
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Figure 1: 3 slices from a single rat at different iterations into 
the algorithm, with corresponding cross-correlation values.  
From iterations 111-112 the left (yellow) and right (red) SI 
groups merge (orange), and from iterations 301-302 the SI 
(yellow) and motor (red) groups merge (orange). 

Figure 2: The cross-correlation values
at which each group formation event
occurred in each rat.  Each rat is
represented by a different color and
shape, events which did not occur in
particular rats are not displayed. 
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