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Introduction: There has been an increased interest in quantitative MR parameter mapping techniques which enable direct comparison of tissue-
related values between different subjects and scans. However the lengthy acquisition times needed by conventional parameter mapping methods limit 
their use in the clinic. For estimating T2 values from highly undersampled radial Fast Spin Echo (FSE) datasets, an echo sharing method was 
proposed in [1]. While this method produces accurate T2 estimates for large objects, the estimation error increases for smaller structures such as 
small tumors. Recently, model-based techniques that utilize sparsifying penalty functions as suggested by the Compressed Sensing (CS) theory [2] 
have also been proposed for this task [3,4]. In this work, we introduce a new model-based approach to reconstruct accurate T2 maps from highly 
undersampled FSE data. The proposed approach referred to as DIrect REconstruction of Principal COmponent coefficient Maps (DIREPCOM) 
employs sparsity constraints in both the spatial and temporal dimensions to produces accurate T2 maps. 
Theory: Let ρ and T2 denote the proton-density and the T2 maps, respectively. Assuming a single exponential T2 decay, the signal model is given by 

, where TEj denotes the jth echo time, and FTj is the forward Fourier Transform for given k-space locations at TEj. In [3], 
an iterative algorithm for reconstructing T2 maps was formulated:  

 
where Kj denotes the measured k-space data at TEj, Pi are penalty functions, and 
λi are regularization parameters. While the algorithm in [3] can obtain T2 maps 
from highly undersampled measurements, the non-linearity of the cost function 
introduced by the exponential term leads to sensitivity to noise and long 
reconstruction times. In addition, since the problem is non-convex, the 
algorithm can be trapped in local minima. In [4], Doneva et al illustrated that 
Principal Components (PCs) of a non-linear model can be calculated and used for sparsity within the CS framework. In this work we removed the 
non-linearity related to T2 estimation using Principal Component Analysis and combined it with CS to jointly exploit the spatial and temporal 
dependencies of the object.  

The first step in the proposed technique is to calculate the PCs of exponential T2 decay curves for a given T2 range and echo time points by 
Singular Value Decomposition (SVD). An exponential T2 decay can be expressed as a weighted sum of these PCs. Let B denote the matrix whose 
columns are the PCs, the dimensions of B are N×N where N is the number of echoes (i.e. echo train length). Since the first few PCs are usually 
sufficient to accurately represent the signal, a truncated N×L matrix can be formed by selecting the first L columns of B. Let M denote the matrix of 
PC coefficients. The dimensions of this matrix are the number of pixels in the image by the 
number of PCs after truncation (L). Let Mi denote the ith column of matrix M and  denote the jth 
row of matrix . The new optimization problem can now be stated as: 

 
In this equation, FTj is the same as in Eq.1, TV( ) denotes total variation, and XFM( ) denotes a 
sparsifying transform (such as wavelets), and  and are regularization parameters. Note that the 
non-linearity has been removed and the problem is now convex. In addition, by including 
sparsifying penalty functions on PC coefficient maps, both spatial and temporal dependencies can 
be exploited. T2 maps can then be derived from the matrix M. 
Methods: Exponential decay curves at given TE’s with T2 values from 50 ms to 500 ms equispaced by 1 ms were used as the training set. Eight TE 
values ranging from 8 ms to 64 ms equispaced by 8 ms were used to generate 8 PCs using SVD. Numerical simulations showed the 3 PCs with the 
largest singular values were sufficient for T2 estimation with absolute errors less than 0.1 ms. Hence only these 3 PCs are used in all reconstructions. 
In vivo data were acquired at 1.5T on a GE scanner using a radial FSE sequence with a single-channel brain coil (ETL=8, echo spacing=8.2 ms, 
TR=1s, 256 ×256, yielding a total of 32 k-space lines per TE). Gold standard data were acquired using the radial FSE method with 256 k-space lines 
per TE. For quantitative comparisons a numerical phantom consisting of circles of varying diameters with T2=100 ms was generated and used in 
simulations. K-space data for the phantom was generated analytically (parameters are the same as in vivo experiment) and i.i.d Gaussian noise was 
added in k-space to give an SNR comparable to in vivo data. The optimization problem was solved using a conjugate gradient algorithm and the 
regularization parameters were determined empirically. For comparison, T2 maps were also obtained using the echo sharing technique from [1]. 
Results: Figure 1 shows T2 maps reconstructed by the echo sharing and the DIREPCOM methods using the same undersampled radial FSE data. The 
figure also includes the gold standard T2 map. The mean T2 of the ROI highlighted in yellow from left to right are: 91.1ms, 91.8ms, 91.3ms 
indicating that for this larger ROI both algorithms yield T2’s comparable to the gold standard. However, the DIREPCOM T2 map has better contrast 
in the small structures (indicated by the arrows) compared to the echo sharing T2 map, where similar structures are more blurred. Note that the 
amount of data used in the DIREPCOM T2 map here is only 1/8 of the amount used to generate the gold standard.  

To further study the performance of DIREPCOM for T2 estimation of small structures we conducted simulations with objects of varying 
diameters. Figure 2 shows an error bar plot of the T2 estimates for the DIREPCOM and echo sharing algorithms from 20 noise realizations. The 
errors of the DIREPCOM estimates are significantly lower even for structures as small as 4 and 6 pixels in diameter. In these small structures the T2 
bias obtained with echo sharing can reach 20-30% which is consistent with what was reported in [1].  
Conclusions:  In this work we proposed a novel algorithm to yield fast, robust and accurate T2 estimates from undersampled data. With this method 
T2 can be estimated from fast scans where only limited data can be acquired (such as abdominal breath-hold scans). While this proposed technique 
has been illustrated for T2 estimation, the methodology can be adapted to the estimation of other MR parameters.   
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