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Introduction:  
    Highly accelerated data acquisition is demanded for 3D volumetric MRI. In recent years, many approaches [1,2,3] have been developed to integrate parallel imaging 
(PI) and compressed sensing (CS) to achieve higher acceleration than either method alone. Among such approaches, L1SPIRiT [3] synergistically combines PI and CS 
and has proven promising in clinical evaluations. However, this iterative solver is highly computationally intensive and poses difficulty for commonly available 
platforms. This work was aimed at developing an efficient L1SPIRiT scheme (ESPIRiT) to address this computation challenge. 
Theory:  
    L1SPIRiT is an iterative algorithm performing PI and CS operations serially in each iteration [3]. The PI operator resynthesizes k-space using a GRAPPA-like 
convolution kernel (Gk) [4]. This operation can be performed more efficiently with image-domain multiplications [5]: Xn+1(x,y)=Xn (x,y)·GI(x,y) (1), where Xn,n+1(x,y) are 
temporary image-domain solutions at pixel (x,y), GI is image-domain unliasing coil weights (GI=F-1(Gk)). The CS operator transforms multi-coil images to sparse 
domain (w) using wavelet (Ψ) and pursues min ||w||1 using softthresholding (T). The computation of the PI and CS operators is O(NX·NC

2·Nit) and O(NX·NC·Nit), 
respectively, where NX, NC·and Nit are the numbers of pixels to reconstruct, coil channels and iterations in the entire reconstruction, respectively. This work intended to 
reduce computation from the following three perspectives: 
1. modified L1SPIRiT to remove NC: The PI operator utilizes k-space 
correlations and ideally should converge to the “truth” image: X=M·C, where M 
and C represent spin density and coil sensitivity distributions, respectively. By 
rewriting equation (1) ((x,y) omitted below for simplicity), we have M·C=M·C·GI 
(2). By eliminating the common scalar M in (2), we get C=C·GI (3), which 
means C (size: NC×1) corresponds to the eigenvector of GI (size: NC× NC) with 
eigenvalue=1 at each pixel. (3) offers an approach to estimate C from GI (Fig. 
1A), with which we perform PI & CS in an alternative way. Our PI operator 
pursues a new solution that is consistent with coil weighting and meanwhile is 
L2-closest to the previous solution: min ||Xn+1-Xn||2, s.t. Xn+1=M·C. The derived 
optimal solution is: Xn+1=CH*·Xn·C / ||C||2

2 (4). Let Cs=C/||C||2, we can rewrite 
and split (4) to two operators: S1: Mn+1=Cs

H*·Xn and S2: Xn+1=M n+1·Cs. S1/2 
reduces the matrix operation (O(NC

2)) in (1) to much faster vector operation 
(O(NC)). Furthermore, an intermediate magnetization image Mn+1 is produced 
such that CS can now be performed in the coil-combined image pursuing joint 
sparsity rather than coil by coil. This further reduces the computation of the CS 
operator by NC×. Additionally, (3) is well-conditioned only at pixels with 
signals, while in air, (3) produces eigenvalues largely different from 1 (Fig. 1A). 
Thus, the eigenvalue map of GI can be used to generate an image support (IS) that 
can eliminate artifacts in air and improve the conditioning of L1SPIRiT [6].   
2. pixel-specific convergence to reduce NX: It is observed that L1SPIRiT convergence 
is highly pixel-specific (Fig. 2). For most pixels, only a small number of iterations are 
needed. Taking advantage of this feature, converged pixels can be “checked out” and 
excluded in later iterations. This can rapidly reduce NX remaining in reconstruction 
(Fig. 2), which can accelerate S1/2 operators and Fourier and wavelet transforms 
performed on an increasingly sparser image.  
3. PI initialization to reduce Nit: It has been shown that PI can improve the initial condition for L1SPIRiT than conventionally used zero-filling and therefore reduce Nit 
needed [7]. Accordingly, Poisson-disk k-space sampling (PDS) is replaced by tiled-PDS (tPDS) for efficient PI initialization without sacrificing image quality [7]. 
Methods:  
    Based on the above theory, we proposed ESPIRiT with improved efficiency. As illustrated in Fig. 1, ESPIRiT consists of : A. calculating C and IS, B. PI initialization 
and C. modified L1SPIRiT. Step A: 1) calculates Gk (kernel size: 7×7×7) using calibration signals in the center portion of the sampled k-space (x0); 2) calculates low-
resolution GI (60×60×60) from Gk; 3) calculates the eigenvector of matrix GI at each pixel with eigenvalue closest to 1; next interpolates the eigenvalue and eigenvector 
maps to full resolution and derive 4) image support (IS) and 5) coil maps (C). Step C iteratively performs: i) S1: combine coil images X to a magnetization image M; ii) 
CS on M; iii) suppress signals in air based on IS; iv) calculate ΔM=||Mn+1-Mn||2 and checkout converged pixels with sufficiently small ΔM; v) S2: reproduce coil images 
X; vi) set acquired k-space data to x0.  
To evaluate ESPIRiT, we scanned 2 volunteers (1 brain & 1 knee) on GE 1.5T with 8-channel coils using a 3D fast spin echo Cube sequence. Imaging parameters were 
selected to generate proton density weighting on the knee and T2 weighting on the brain. Full k-space was acquired and offline decimated to simulate 1) PDS and 2) 
tPDS with 2.5×2.5 acceleration (net: 5.4×). The PDS and tPDS datasets were processed in Matlab using L1SPIRiT with Nit=50 and ESPIRiT with Nit=25, respectively. 
Results:  
    Fig. 3 shows the results on the knee. ESPIRiT (b) produces image quality 
very similar to the full k-space reconstruction (a), while L1SPIRiT (c) 
generates considerable errors (arrows). The difference can be better 
appreciated in the zoomed-in figures (d-f). The error level of ESPIRiT (g) is 
visually lower than that of L1SPIRiT (h). Similar results were observed on the 
brain dataset. The RMES’s are L1SPIRiT: 7.83%/14.19% (knee/brain) and 
ESPIRiT: 6.99%/11.77%. ESPIRiT ran ~10× faster than L1SPIRiT. (note: 
higher acceleration in computation compared to L1SPIRiT is anticipated in a C 
implementation, which can better leverage pixel-specific convergence). 
Discussions:  
    ESPIRiT can significantly improve the computation efficiency of L1SPIRiT, 
by reducing the computation complexity (~NC×), number of pixels to process 
(on average ~2×) and number of iterations needed for convergence (~2×). The sensitivity maps in ESPIRiT are derived from k-space correlations and should be 
relatively insensitive to difficulties in explicit sensitivity estimation [8]. Our initial results show that ESPIRiT can also achieve slightly more accurate reconstructions 
within half the number of iterations compared to L1SPIRiT.  
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Fig.1 Flow chart of ESPIRiT reconstruction
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Fig.3 Reconstruction using a) full k-space, b) ESPIRiT, c) L1SPIRiT. d-f show a 
zoomed-in area (dotted in a) for a-c. g & h are error images for b & c, respectively
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Fig.2 Difference produced by L1SPIRiT in iteration 5 (1st), 10 (2nd) & 25 
(3rd) . Reduction of Nx (×104) over ESPIRiT iterations (4th).
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