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Introduction  
We observe that the projection vectors associated with spatial principal component analysis (PCA) of resting-state fMRI data have their frequency 
spectrum shifting from low to high frequency as the variance of the spatial principal components decreases. This trend becomes more significant after 
the fMRI data is treated with temporal smoothing using a Gaussian kernel. This observation indicates that, after the typical preprocessing procedure 
including motion correction, spatial smoothing, temporal smoothing, and global signal removal, the variance of resting-state fMRI data is dominated 
by the lowest frequencies within the 0.01 to 0.1 Hz range associated with BOLD signal fluctuations. The decomposition of signal variance at different 
temporal frequency bands can be achieved by PCA, indicating that PCA provides the basis for order selection of fMRI data not only by ranking the 
variance of the principal components, but also by the ranking their frequency concentration. As a result, dimension reduction of fMRI data using PCA 
is a valid procedure for removing high frequency signal fluctuations irrelevant to the hemodynamic response.  
 
Methods 
Image acquisition: Ten healthy young adult subjects were studied on a 3T Signa EXCITE HDx MR scanner (GE Healthcare, Waukesha, WI) using an 
8-channel head phased-array radiofrequency head coil. BOLD fMRI images of the supratentorial brain were obtained using a 2D multislice gradient 
echo echoplanar acquisition with FOV 22x22 cm, 64x64 matrix, 4 mm interleaved slices with no gaps, and TR of 2 sec and TE of 28 sec.  After 10 
dummy brain volume scans to reach equilibrium magnetization, two hundred (T=200) brain volumes were collected over a period of 7 minutes with 
the subject's eyes closed to minimize exogenous visual activation. ASSET parallel imaging with a reduction factor of 2 was used to reduce distortion.  
Preprocessing: (a) Motion correction was applied to fMRI volume data by registering each scanned volume data with the median volume using the 
MCFLIRT function in FSL (http://www.fmrib.ox.ac.uk/fsl). (b) In-brain voxels were extracted by the BET function in FSL. (c) Spatial smoothing was 
applied by convolving each scanned volume with an 8x8x8mm Gaussian kernel, using the “fslmath” function in FSL. (d) Temporal filtering was 
applied to each voxel time sequence by regressing out the linear trend and performing temporal smoothing using a Gaussian kernel with σ  = 2.8 sec. 
Data analysis: (a) The global baseline (i.e., the grand mean of the dataset), the global spatial map (i.e., the mean of time sequence at each voxel), and 
the global time course (i.e., the mean of in-brain volume at each time point) are removed from the dataset. (b) PCA is applied to each dataset to 
achieve the spatiotemporal decomposition, i.e., the TxN fMRI data matrix Y, where T is the total number of time points and N is the total number of 
in-brain voxels, is decomposed into a TxT projection matrix E and a TxN component matrix Z, i.e., Y = EZ. Discrete Fourier transform was applied to 
each column of E to obtain the frequency spectrum of each PCA project vector.  
 
Figure 1. The principal component magnitudes 
(top panel) and the center frequencies of their 
projection vectors (bottom panel). Mean and 
standard deviation are taken across resting state 
fMRI datasets from all ten subjects. 
 
Figure 2. Frequency spectrum plots of ten 
representative principal component projection 
vectors from one resting state fMRI dataset.     
 
Results 
Figure 1 shows that, as the magnitude of the 
principal component decreases, the frequency 
spectral power tends to shift from low frequency to 
high frequency. The BOLD fluctuations are 
captured within the first 70—80 principal 
components. Figure 2 shows the frequency 
spectrum plots of 10 projection vectors sampled 
evenly from the full temporal dimension of the 
fMRI data (k = 1, 21, …, 181). It is observed that as the dimension index k increases, the 
frequency band segregation across the PCA projections become more clear. We also compared 
the results on the same dataset without temporal smoothing, i.e., step (d) in the preprocessing 
procedure, and observe that the dynamic range of the magnitudes of the principal components 
increases after temporal smoothing is applied.  
 
Discussion 
We observe that PCA on fMRI data not only decomposes the signal fluctuations into principal 
components ranked by the variance contribution, but also decomposes their temporal dynamics 
into ordered frequency bands, even within the 0.01–0.1 Hz BOLD frequency range. After the 
typical preprocessing and removal of global signals, the major contributor to signal fluctuation in fMRI is the BOLD signal, which has its frequency 
concentration from 0.01 to 0.1 Hz due to the effect of the hemodynamic response [Martino, 2007].  Through investigation on the effect of temporal 
smoothing with a Gaussian kernel, we find that PCA projection of temporally filtered data gives more significant contrast on the magnitudes across 
different principal components and their temporal frequency bands are more clearly separated. These observations indicate that (i) order selection 
criteria for fMRI data based on PCA can be cross-validated by observing the frequency shifting trend of the PCA projection vectors and (ii) temporal 
filtering may aid estimation of the intrinsic dimension of spatiotemporal fMRI data. 
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