
Fig. 1: The standard PVEc algorithm (left) was modified to adjust the 
shape of the regression kernel based on its overlap with hypothesized 
activation ROI (right).  As the regression kernel is positioned at various 
locations throughout the image, the algorithm checks whether it also 
overlaps with the activation kernel (purple). If there is no overlap, all 
voxels within the kernel contribute to linear regression as per the standard 
PVEc method.  Otherwise, the algorithm checks whether the overlap 
affects the center voxel.  If the center voxel is affected, the linear 
regression includes only the voxels which are also within the activation 
kernel.  Conversely, if the center voxel is not within the activation kernel, 
the linear regression excludes all voxels within the activation ROI.   

Fig. 2: Modeled GM ΔCBFd representing a 15% 
increase in baseline CBFd over a 5x5x1 voxels 
activated region (left) and ΔCBFd retrieved using 
standard PVEc method (center) and new, selective 
kernel, method (right). 

Fig. 3: The difference in PGM obtained from SPM5 segmentation of subject’s 
MPRAGE and SPGR (1st row, left) causes difference in GM CBFd (2nd row, 
left) estimation using PVEc.  Similarly, the difference in PGM obtained using 
two different (SPM5 and SPM2) segmentation algorithms (1st row, right) 
causes differences in estimated GM CBFd (2nd row, right).
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Introduction:  Quantification of inter-subject differences in cerebral blood flow (CBF) separately from respective differences in tissue content presents a 
known challenge in analysis of group data1. Recently, our group has developed an algorithm which corrects for partial volume effects (PVE) in arterial spin 
labeling (ASL) imaging and also yields tissue specific flow ‘density’ maps (CBFd) which are, theoretically, independent of tissue content2. The PVE 
correction (PVEc) algorithm uses linear regression to estimate gray matter (GM) and white matter (WM) CBFd by modeling the voxel magnetization as a 
weighted sum of mGM, mWM and mCSF (i.e. GM, WM and CSF magnetization) contributions and the ASL control-label difference signal as a weighted sum of 
dGM and dWM (i.e. GM and WM control-label difference) contributions2.  The weighting coefficients in both cases are tissue’s fractional volumes obtained from 
segmentation of subject’s high-resolution structural image2. The algorithm assumes local homogeneity of tissue specific magnetization and CBFd over a small 
region surrounding each voxel (i.e. voxel’s regression kernel)2.  The goals of the present work are to (1) optimize the PVEc algorithm for applications where 
focal differences in CBFd (ΔCBFd) occur (e.g. in functional imaging) and (2) demonstrate how segmentation can affect accuracy of CBF and CBFd 
estimation.  
Methods:  Optimizing PVEc method for detection of focal ΔCBFd: Noise-free CBFd images were obtained via simulation of ASL control and label EPIs as: 
MCONTROL=(PGM·mGM)+(PWM·mWM)+(PCSF·mCSF), and MLABEL=(PGM·(mGM-dGM))+(PWM·(mWM-dWM)). dGM and dWM were back-calculated from ASL 2-
compartment formula3 with the assumptions that CBFd = 107 and 28 mL/100g·min for GM and WM, respectively, and mCSF/mGM/mWM=1.7/1.2/1.04. PGM, 
PWM, and PCSF denote voxel fractional tissue content obtained from segmentation of a subject’s high resolution structural image4 (acquisition detailed below). 
A 15% ΔCBFd activation was simulated on a 5x5x1 voxels region centered at [-35, 4, 8] mm MNI coordinate. EPIs were analyzed to yield CBF using both, 
the standard PVEc method2 and the novel, fMRI-optimized method (referred to as ‘selective-kernel PVEc’) which modifies the regression kernel shape based 
on hypothesized activation ROI, as schematically detailed in Fig. 1. Effect of image segmentation on quantification of CBF: Spin Echo (SE) EPI CASL images 

(n=65) were acquired on a 
22 y.o. male subject using 
3T Philips, Achieva with: 
labeling duration=1.9 s, post 
labeling delay=1s, TR/TE= 
4300/29 ms, FOV = 240 x 
210 mm2, in plane 
resolution= 3.75 x 3.75 x 8 
mm2, 13 slices. To test the 
effect of image modality on 
tissue segmentation, PGM, 
PWM and PCSF images were 

obtained from SPM5 segmentation of (1) a magnetization prepared rapid gradient echo (MPRAGE) image (TR/TE=6.7/3.1ms, FA=8°, TI=0.8s, in plane 
resolution =.9 x.9 x.9 mm3) and (2) a spoiled gradient recall (SPGR) image (TR/TE=25/1.94ms, FA=30°, in plane resolution =.9 x .9 x.9 mm3). To test the 
effect of image segmentation algorithm, MPRAGE image was also segmented using SPM2 segmentation algorithm.  PVEc regression method2 was used to 
estimate CBFd using same set of ASL images and each tissue segmentation variant. 

Results:  Fig. 2 illustrates that, while the standard PVEc method causes dilution of ΔCBFd signal, 
selective-kernel PVEc can retrieve activation with 100% efficiency in terms of both, magnitude and 
spatial localization.  The signal dilution in standard PVEc method is caused by inherent spatial 
smoothing of the regression kernel2: ΔCBFd within activation ROI is under-estimated when non-
activated voxels also 
contribute to the 
regression kernel; 
ΔCBFd in non-
activated voxels 
surrounding the 
activation ROI is over-
estimated when voxels 
within the activated 

region contribute to linear regression.  The effect of tissue segmentation on 
quantification of CBF is illustrated in Fig. 3. Both, image modality and 
segmentation algorithm used, affect estimation of PGM (1st row) and, in turn, 
estimation of CBFd using PVEc algorithm. 
Discussion: Selective-kernel PVEc ASL can, theoretically, detect focal 
changes in CBFd (e.g. due to stroke or functional activation) with 100% 
efficiency in magnitude and spatial localization.  In case of stroke, the 
hypothesized ’activation’ ROI can be selected by tracing the stroke lesion on 
subject’s structural.  In case of activation, the ROI can be obtained by parcelating functional brain regions based on standard atlas.  Use of CBFd, rather than 
net CBF images, has potential to isolate inter-subject differences in CBF (or ΔCBF) from differences caused by inter-subject variation in tissue content.  
However, CBFd estimation is dependent on accuracy of tissue segmentation algorithm, and further work is necessary to evaluate which segmentation 
algorithm and image modality yield most accurate segmentation results. Importantly, net CBF using conventional, PVE-uncorrected method also depends on 
tissue content maps and is therefore also affected by segmentation differences. 
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