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Introduction: Multidimensional magnetic resonance spectroscopy (MRS) can provide additional information at the expense of longer acquisition time than 1D MRS. 
Assuming 2D MRS is sparse in wavelet domain, Iddo[1] first introduced compressed sensing (CS) [2,3] to reconstruct multidimensional MRS from partial and random 
free induction decay (FID) data. However, the darkness in 1D MRS derives from the discrete nature of chemical groups [4]. Significant peaks in these MRS takes up 
partial location of the full MRS while the rest locations own very small or even no peaks. This type of MRS can be considered to be sparse itself, named sparse MRS. In 
the concept of sparsity and coherence for CS[5], we will demonstrate that wavelet is unnecessary to sparsify sparse MRS, and it makes the reconstructed MRS even 
worse than using identity matrix. Furthermore, a lp quasi-norm compressed sensing reconstruction is employed to improve the quality of reconstruction.  
Methods: For a signal x  that can be represented by S-term non-zero entries with vector α  in basis Ψ ,  x can be recovered by solving l1 norm optimization when 
number of measurements M satisfies ( )2 , logM C S Nμ≥ ⋅ ⋅ ⋅Φ Ψ   where μ  stands for the coherence between sensing matrix Φ  and basis matrix Ψ [4]. It implies that 
the number of required measurements is proportional to the number of nonzero entries in α  and the square of coherence μ .   Although wavelet is a general transform 

to sparsify MRS, those MRS from chemical groups carry large peaks in only small portion of locations. These MRS can be viewed as sparse MRS which means 
spectroscopy is sparse in identity matrix I. In fact, Stern et al proposed to directly do iterative thresholding on the spectroscopy to recover the truncated 1D NMR 
spectroscopy [6] which implicitly supports this idea. In addition, pioneer works on CS theory pointed out that the coherence between Fourier and wavelet is larger than 
that of Fourier and time because time-frequency is with the minimal coherence [5]. At this point there is no need to do the wavelet transform on the spectroscopy which 
is sparse in identity matrix I. In addition, Rick Chartrand [7] proposed to replace l1 norm with lp quasi-norm to reconstruct the signal with fewer measurements than l1 
requires. Thus, we propose to employ compressed sensing to reconstruct multidimensional sparse MRS from partial FID data as follows: 

  
where y is the partial and random FID data, Θ  is a random sampling operator that determines the phase lines to be randomly and partially acquired, TF denotes the 
inverse 2D Fourier transform and 0C  controls the data consistency. 

Results: Measuring the decay of coefficients' magnitude in a sparsifying transform domain is a simple way to test the sparsity. Fig.1(b) shows that decay of identity 
matrix decreases faster than that of wavelet. It means this type of spectroscopy is sparser in identity matrix domain than in wavelet domain. For the random sampling 
mask shown in Fig.1(c), the mutual coherence between wavelet and Θ TF  is 0.99 and mutual coherence between identity matrix  and Θ TF  is 0.25. Fig.1 (e) and (f) 
show that identity matrix can recover much more peaks than wavelet does. One can also observe pseudo peaks in the spectra of indirection dimension using wavelet-
based CS while identity matrix-based CS does not. Compared with Fig.1 (e), Fig.1(g) shows replacing l1 norm with lp norm can further improve the reconstruction 
quality. We introduce normalized mean square error (NMSE) defined as 2
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 to  evaluate the difference between fully sampled spectra  x%  and 

reconstructed spectra x̂  with partial FID data. 
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Fig.1 Reconstruction of 1H-1H spectroscopy.(a) fully-sampled MRS (b) decay of coefficients' magnitude , (c) 20%  phase lines are randomly sampled, (d)-(g) are 
reconstructed MRS with zero-filling(NMSE=0.83) ,wavelet-based CS with l1 norm(NMSE=0.31), identity matrix-based CS with l1 norm(NMSE=0.25), identity matrix-

based CS with lp (p=0.5) norm (NMSE=0.21), (h)-(l) are the spectra of indirect dimension corresponding to (a),(d),(e),(f),(g), respectively . 
Conclusions and Discussion: For sparse MRS, wavelet is not necessary and even worsen the reconstructed spectra. With the lp quasi-norm, quality of  reconstructed 
spectra can be further improved. However, how to define the meaningless peaks depends on applications. A qualitative analysis of sparse MRS is needed in order to 
satisfy the requirement of CS. Method proposed in this paper can extend to higher dimension MRS than 2D.  
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