Early Detection of Transplant Rejection by In Vivo ¹⁹F MRI

U. Flögel¹, S. Song², I. Kreideweiß¹, Z. Ding¹, O. Witzke², and J. Schrader¹

¹Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität, Düsseldorf, NRW, Germany, ²Klinik für Nephrologie, Universitätsklinikum Essen, Germany

Introduction

Diagnosis of transplant rejection requires endomyocardial biopsy and entails risks. Here, we validated a ¹⁹F MRI approach for the early detection of organ rejection by noninvasive visualization of the macrophage host response. We employed biochemically inert emulsified perfluorocarbons (PFCs), which were reported to be preferentially phagocytized by monocytes and macrophages^[1,2]. Isografts from C57BL/6 and allografts from C57BL/10A mice were heterotopically transplanted into C57BL/6 recipients. In this model, the transplanted heart undergoes predictable progressive rejection, leading to graft failure after two weeks^[3].

Methods

Experiments were performed at a vertical 9.4 T Bruker DRX Wide Bore NMR spectrometer operating at frequencies of 400.13 MHz for ¹H and 376.46 MHz for ¹⁹F measurements using a Bruker Microimaging unit (Mini 0.5) equipped with an actively shielded 57-mm gradient set (200 mT/m maximum gradient strength, 110 μ s rise time at 100% gradient switching) and a ¹H/¹⁹F 30-mm birdcage resonator. Heterotopic abdominal heart transplantation was carried out as previously described^[4]. At various times after surgery 500 μ l of a perfluoro-15-crown-5 ether (15C5) emulsion (10%, particle size 130 nm) was injected into the tail vene of the mice. In order to monitor the time course of PFC accumulation within the grafted heart, anatomically corresponding ¹H and ¹⁹F MR images were acquired with the following parameters: FOV 3x3 cm², ¹H: ECG- and respiratory-triggered FLASH, slice thickness 1 mm, matrix 256x256, acquisition time 1 min, ¹⁹F: RARE (RARE factor 64), slice thickness 2 mm, matrix 128x128, acquisition time 20 min. Image acquisition was triggered to cardiac motion of the donor heart by recording its ECG via the hind paws.

Results and Discussion

To exclude that inflammatory processes by the surgical intervention may mask the immune reaction induced by rejection, we first compared genetically identical isografts with allografts. As can be seen from Fig. 1A, six days post transplantation the ¹H images show a similar position and anatomy of the graft in the abdomen for both cases. However, the corresponding ¹⁹F images matched a signal pattern in shape of the ventricular walls only in the allograft (Fig. 1A bottom). Merging of these images confirms the localization of PFCs within the left and right ventricle. In contrast, isografts – where no rejection occurs – showed ¹⁹F signals only at the site of vessel anastomosis (Fig. 1A top). ¹H/¹⁹F MRI enabled us to detect the initial immune response not later than 3 days after surgery (Fig. 1B), when conventional parameters did not reveil any signs of rejection (Fig. 2C). In allografts, the observed ¹⁹F signal strongly increased with time correlating with the extent of rejection. In separate experiments, rapamycin was used to demonstrate the ability of ¹⁹F MRI to monitor immunosuppressive therapy. Histologic analysis of the number of CD11b-positive (as marker for monocytes/macrophages) cells found in the myocardium of the graft confirmed that ¹⁹F signals correlate with the quantity of infiltrating immune cells. In conclusion, PFCs can serve as positive contrast agent for the early sensitive detection of transplant rejection by MRI, permitting high spatial resolution and an excellent degree of specificity due to lack of any ¹⁹F background.

Fig. 1: (A) Anatomical matching ¹H and ¹⁹F MR images acquired 6 days after transplantation of an iso- and allograft, respectively. For merging of data sets the hot iron colour lookup table was applied to ¹⁹F images. (B) Temporal development of detected ¹⁹F signals in iso- and allgrafts, which precede conventional parameters of rejection (C, palpation score).

References

- 1. Mattrey RF, Long DM, Multer F, Mitten R, Higgins CB. Perfluoroctylbromide: a reticuloendothelial-specific and tumor-imaging agent for computed tomography. Radiology 1982; 145: 755-8.
- 2. Flögel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J. *In vivo* monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 2008; 118: 140-8.
- 3. Hasegawa T, Visovatti SH, Hyman MC, Hayasaki T, Pinsky DJ. Heterotopic vascularized murine cardiac transplantation to study graft arteriopathy. Nat Protoc. 2007; 2: 471-480.
- 4. Wu K, Zhang J, Fu J, Wu S, Philipp T, Uwe H, Kribben A, Witzke O. Novel technique for blood circuit reconstruction in mouse heart transplantation model. Microsurgery 2006; 26: 594-8.