Ultra high-resolution absorption intermolecular multiple-quantum NMR spectroscopy without strong coupling artifacts under inhomogeneous fields

X. Chen¹, M. Lin¹, and Z. Chen¹

¹Physics Department, Fujian Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, China, People's Republic of

Introduction

Intermolecular multi-quantum coherence (iMQC) is capable of improving NMR spectral resolution¹. However, the usefulness of conventional 2D iMQC high-resolution methods is considerably reduced by two main drawbacks. Firstly, none of the existing 2D iMQC spectra has double-absorption mode hitherto. The phase-modulated signal introduces unfavorable line broadening and phase-twisted peak shape². Secondly, strong scalar couplings lead to additional cross-peaks usually known as "strong coupling artifacts". To solve the above problems, and to shorten the long scan time of 2D spectra and suppress strong solvent signals as well, a pulse sequence which combines iDQF-HOMOGENIZED⁴ with constant-time (CT) scheme⁵, dubbed as CT-iDH is designed.

Methods

To obtain absorption spectra, our idea is to record two equally weighted signals with mirror image pathways²: one is from CT-iDH-iZQC (Fig. 1b), and the other is from CT-iDH-iDQC (Fig. 1c). Although either spectrum has undesirable phase-twisted lineshape, these two signals can be combined via data processing to form a complete echo in both dimensions of time domain, thus yielding a 2D amplitude-modulated spectrum in frequency domain.

For strong coupled systems, the hard π pulse leads to coherence transfer between t_1 and t_2 , and produces cross-peaks³. However, the CT-iDH sequence is designed with a constant t_1 evolution time when the solute precessions under frequency offsets and J-couplings remain invariant, because no other RF pulse is exerted on the

solute spins. Therefore, the frequency offsets and *J*-couplings of solutes will not cause t_1 -modulation. The cross-peaks have the same t_2 -precessions as axial peaks and will exactly overlap each other. Consequently, no extra strong coupling artifacts will appear in the CT-iDH spectra.

All experiments were performed on an 11.74 T Varian NMR System,

-x, -x) and receiver = (x, -x, x, -x, x, -x, x, -x, x, -x). The phase cycling for the first RF pulse of the original iZQC/iDQC sequences is: $\theta = (x, y, -x, -y, x, y, -x, -y)$. The repetition time (TR) and the echo time (TE) were TR/TE = 2000/200 ms. 500×25 points were acquired with spectral widths of 5000 Hz × 120 Hz in F₂×F₁ dimensions in circa 16 min.

Results and discussions

In Fig. 2, the protons in aspartate form a typical ABX spin system. The strong coupling effect in either original iZQC or iDQC spectra (Fig. 2a~b) may lead to misinterpretation or incorrect quantification of metabolites. However, there is no observable strong coupling artifacts in the 2D CT-iDH spectrum (Fig. 2c~d). Furthermore, since the dispersion parts are eliminated, the resolution of the CT-absorption spectrum (Fig. 2d) is improved by two times.

In Fig. 3, though the spectral resolution of the CT-iDH-iZQC spectrum (Fig. 3b) remains the same as the iZQC spectrum (Fig. 3a), the strongly-coupled multiplets of citrate (AB spin system) in Fig. 3a are distorted in the resonance intensities. In the CT-iDH-absorption spectrum (Fig. 3c), not only the correct multiplet intensity pattern is preserved, but also the spectral linewidth is reduced by half.

Acknowledgments

This work was partially supported by the NNSF of China under Grant 10774125.

Reference

- 1. Vathyam S., et al., Science 272, 92, 1996.
- 2. States D. J., et al., J. Magn. Reson., 48, 286-292, 1982.
- 3. Thrippleton. M. J., et al., J. Magn. Reson., 174, 97-109, 2005.
- 4. Chen X., et al., *Phys. Chem. Chem. Phys.* 9, 6231-6240, 2007.
- 5. Nagayama K., et al., J. Magn. Reson., 40, 321-334, 1980.

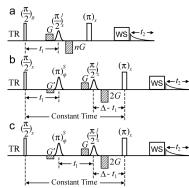


Fig. 1 Pulse sequence: (a) original iZQC (*n* = 0) or iDQC (*n* = 2), (b) CT-iDH-iZQC, and (c) CT-iDH-iDQC

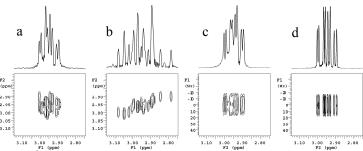


Fig. 2 ¹H NMR spectra of AB part of aspartate in water in an inhomogeneous field with a linewidth of 40 Hz: (a) original iZQC spectrum, (b) original iDQC spectrum, (c) CT-iDH-iZQC spectrum, and (d) CT-iDH absorption spectrum.

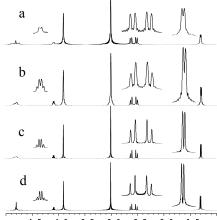


Fig. 3 ¹H NMR spectra of the sample of water solution of creatine, lactate and citrate. (a) original iZQC projection spectrum, (b) CT-iDH-iZQC projection spectrum, and (c) CT-absorption projection spectrum, (a)~(c) are all acquired under an inhomogeneous field with a linewidth of 40 Hz. (d) 1D conventional spin-echo spectrum in a homogeneous field. From (a) to (d), the linewidths of creatine singlets at about 3 ppm are 6.4 Hz, 7.2 Hz, 3.8 Hz and 3.2 Hz, respectively.