Accurate and precise measurement of renal filtration and vascular parameters using DCE-MRI and a 3-compartment model. P. S. Tofts¹, M. Cutajar^{1,2}, I. Mendichovszky³, and I. Gordon² ¹Imaging Physics, Brighton & Sussex Medical School, Brighton, East Sussex, United Kingdom, ²Radiology and Physics, UCL Institute of Child Health, London, London, United Kingdom, ³University of Manchester, Manchester, United Kingdom **Hypothesis**: A recent compartmental model^{1,2} of DCE-MRI can provide precise and accurate measurements of renal filtration, blood flow and blood volume, and hence be reliable enough for clinical studies. Precision would be estimated from repeated measurements; accuracy by comparison with published normal values. **Introduction**: A 3-compartment model² fits DCE data with small residuals. Two modes have been described: *uptake mode* (for data up to 90s, when efflux is ignored), and *complete mode* (for longer time-series, when efflux is allowed). Cortical and parenchymal ROI's have been studied. **Methods**: **MRI**: 15 normal subjects were imaged before and after injection of 0.05 mmole/kg of Gd-DTPA, on a Siemens 1.5T Avanto imager, using a TIM 32 channel body phased array coil. A spoilt gradient echo 3D sequence had TR=1.6ms, TE=0.6ms, FA=17°. 18 contiguous 7.5mm slices were collected every 2.5s, with in-plane resolution 3.1 x 3.1mm, covering both kidneys. Subjects were imaged a week later, giving a total of 60 normal kidney curves. **Compartmental Modelling:** The 3-compartment model^{1,2} was simplified to exclude efflux: $$C_p^{glom}(t) = C_p^{aorta}(t) \otimes g(t) = \int_0^t C_p^{aorta}(t - \tau)g(\tau)d\tau$$ $$C_t(t) = v_b(1 - Hct^{small})C_p^{glom} + K^{trans}\int_0^t C_p^{glom}(\tau)d\tau$$ C_d , C_p^{aorta} , C_p^{glom} , C_t are the time-dependent concentrations in v_d , aortic plasma, glomerular plasma, and kidney tissue respectively. v_p , v_b and v_d are the fractional volumes of glomerular plasma, glomerular blood and the distribution space for tracer extracted from the blood (principally the tubules). The delay and dispersion for plasma-borne tracer travelling from the aorta to the glomerular are described by the Glomerular Impulse Response Function (GIRF) g(t). F_1 is the tracer extraction rate per unit volume (mmole min⁻¹ mL⁻¹) from the glomerular plasma by the kidney; F_1 = K_p^{trans} C_p^{glom} ; K_p^{trans} is the transfer constant³ from glomerular plasma to kidney (GFR per unit volume of tissue). **MRI modelling:** There were 4 free parameters: v_b , K^{trans} , and 2 delay and dispersion parameters which defined the GIRF. Three GIRF shapes were investigated: instant exponential decay; delayed exponential decay; and delayed gaussian. Blood flow F was estimated from the peak, and also using $F=v_b/MTT$ (MTT=mean transit time). Filtration Fraction FF= K^{trans}/F . Perfusion mode (using tissue data up to the post-bolus dip) enabled F and v_b to be estimated with minimal influence of filtration. **MRI analysis:** AIF's were found from the descending aorta. Blood $T_{10}=1.4$ s; parenchyma $T_{10}=1.2$ s. Relaxivity $r_1=4.5$ s⁻¹ mM⁻¹. Hct = 41%. Kidney volume was measured from ≈ 8 slices in each kidney. Normal group (n=15) mean and swere found. Instrumental sd was found from the repeats using Bland Altmann analysis. Body Surface Area was estimated from BSA (m²) = 0.0235 Height(cm)^{0.422} Weight(kg)^{0.514}. Standardised kidney volumes (for BSA=1.73m²) were calculated. Normal single kidney volume V_{kid} was estimated from the published normal value of mass m=150g as follows: V_{par} =m/p; V_{kid} = V_{par} /(1- αv_b) (V_{par} =total volume of Normal single kidney volume V_{kid} was estimated from the published normal value of mass m=150g as follows: V_{par} =m/ ρ ; V_{kid} = V_{par} /(1- αv_b) (V_{par} =total volume of parenchyma (excluding blood); ρ =parenchymal density=1.03; α =fraction of blood that drains out when kidney is excised and weighed (estimated α =0.9±0.1)); v_b =0.35 (ref 5). Thus V_{kid} =213±11 mL. **Results**: Delayed exponential and gaussian GIRF's fitted better (rms residual \approx 3-4%) than instant exponential; gaussian values are shown in the table. Cortical ROI's gave higher values of filtration, and lower MTT's, than parenchyma, as expected. However parenchymal v_b (44%) and F were unexpectedly higher than cortical v_b (35%) and F. Perfusion mode gave better fits that uptake mode (residuals \approx 1% lower); however reproducibility and perfusion parameters were the same. | | | MRI normal
mean <u>+</u> sd | ınstrumental
sd | normal | |---|---------------------------|--------------------------------|--------------------|---------------------| | filtration (min ⁻¹) | K^{trans} | 0.25 <u>+</u> 0.05 | 0.04 (15%) | 0.28(a) | | Mean Transit Time (s) | MTT | 5.9 <u>+</u> 0.7 | 0.4 (6%) | 6.5^{6} | | blood volume (%) | \mathbf{v}_{b} | 44 <u>+</u> 10 (b) | 7 (17%) | 35%(c) ⁵ | | blood flow
mL min ⁻¹ (100 mL) ⁻¹ | F | 495 <u>+</u> 153 (d) | 62 (12%) | 258(e,f) | | filtration fraction (%) | FF | 8.9 <u>+</u> 1.6 | 0.7 (8%) | 15-20 7 | | absolute kidney volume (mL) | V_{kid} | 230 <u>+</u> 28 | - | 213 | | standardised kidney volume (mL) | ${V_{kid}}^*$ | 214 <u>+</u> 20 | - | 213 | | GFR (mL min ⁻¹) | GFR | 115 <u>+</u> 27 | - | 120 7 | (a) = GFR/($2V_{kid}^*$) (b) right cortical v_b =35% (c) CT method⁵ (d) right cortical F = 435 \pm 110 (e) using total RBF=1.1 L min⁻¹ (f) cortical F = 416 (Case Kid Int 1978;13:236) **Table: analysis of parenchymal ROIs in uptake mode** Figure: uptake mode fit to parenchymal ROI for 90s ## **Discussion and Conclusions:** - 1. Three renal physiological parameters (filtration, MTT and blood volume) when measured using MRI, have instrumental SD \approx 6-17%; thus realistic group and individual differences might be reliably detected. Clinical studies would demonstrate sensitivity of these parameters to physiological change. - 2. The accuracy of the filtration values (K^{trans}) is excellent (see table). - 3. Mean transit time MTT is precise, unaffected by T₁₀, Het or r₁, possibly as sensitive to physiological changes as blood flow, and a good biomarker candidate. - 4. The accuracy of *parenchymal* blood volume v_b (and hence blood flow F and filtration fraction FF) is disappointing. v_b appears to be too high, giving high F and low FF. Similarly high parenchymal F values from DCE MRI have been reported by Sourbron⁶ (plasma flow = 220; F = 370). - 5. Right cortical v_b and F are accurate. Left cortical values showed an inexplicable and significantly higher v_b and F (p<1E-8). - 6. Possible causes of parenchymal perfusion parameter inaccuracy are naive modelling of the medullar vasculature, or systematic error from assumed T_{10} , FA, Hct or r_1 (a small vessel Hct=30% would give reduced v_b =37%). - 7. Tubular relaxivity r₁ may be as low as 50% of the assumed in-vitro value⁸ and would increase estimates of K^{trans} but not v_b or F. - 8. Our measured standardised single kidney volume (214 mL) agrees with an estimate from the published mass (150g) that takes account of the large blood volume; it differs from the value obtained using the naïve assumption of unit density (this gives 150 mL). - 9. Improved movement correction might improve the repeatability. References: 1. Tofts ISMRM 2008; 454 2. Tofts ISMRM 2009; 408 3. Tofts JMRI 1999;223 4. Gehan EA Cancer Chemotherapy Rep 1970;54:225 5. Tsushima Am J Kid Dis 1999;33:754 6. Sourbron Invest Radiol 2008;43:40 7. Eaton Vanders Renal Physiology 2009 8. Shuter Magn Res Imag 1996;14:243