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Estimates of mitochondrial capacity derived from phosphocreatine recovery kinetics in human calf and thigh muscle differ 
systematically from published measurements using invasive methods 
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Introduction. Analysis using 31P MRS of the kinetics of phosphocreatine (PCr) recovery provides information about muscle mitochondrial function 
in vivo hard to obtain any other way. In analyses of PCr recovery as a linear system (1) its rate constant kPCr is approximately proportional to 
‘mitochondrial capacity’ (QMAX, a function of mitochondrial numbers, function and substrate/O2 supply) (2), but the argument depends on 
extrapolation to ‘complete’ PCr depletion, which is likely to be complicated by e.g. glycolytic pH change and vascular O2 limitations. Another 
approach is based on the roughly hyperbolic relationship of oxidative ATP synthesis rate (Q, ≈ PCr resynthesis rate, V) to free [ADP] (calculated 
from pH and [PCr] assuming the creatine kinase equilibrium), resembling that obtainable with mitochondria in vitro, consistent with [ADP] as a 
feedback signal matching ATP supply to demand: QMAX ≈ V extrapolated to ‘infinite’ [ADP] (2). Such inference depends on the shape of the V-
[ADP] relationship, of which dynamic range considerations require a degree of cooperativity (Hill coefficient nH ≈ 2) (3), consistent with results of 
detailed kinetic simulation (4). Variability of these relationships with e.g. muscle, exercise mode and intensity, and their relations to other 
mitochondrial measures, are relatively unexplored. Here we compare the V-[ADP] relationship and apparent QMAX in two muscles, quadriceps (vastus 
lateralis) and calf (gastrocnemius/soleus), at two exercise intensities, and with estimates of QMAX inferred from some published measurements.  

 Methods. 11 healthy subjects aged 20-26 years were studied in a 3T Trio scanner (Siemens, Germany) using a 18 cm dual-tuned surface coil (Rapid 
Biomedical, Germany) and purpose-built rigs for isometric plantar flexion and knee extension exercise, performed on separate occasions. After 
resting acquisition (TR = 10 s), data were acquired with TR=2 s during 1 min rest, 3 min 60% maximal voluntary contraction force (MVC) exercise 

(0.25 Hz, 50% duty cycle), 5 min recovery, 2 min 90% MVC exercise and 5 
min recovery. Data were quantified by jMRUI-3.0 and analysed by 
monoexponential PCr recovery fit, then analysing the V-[ADP] relationship 
throughout recovery, constraining nH = 2 (4) and Km to be identical for both 
exercise intensities. Comparative estimates of QMAX for quadriceps were 
obtained, recalculated or inferred from published O2 consumption measured 
by arteriovenous difference (AVD) during knee extension (5-12), 31P MRS 
studies (13-19) and studies in which mitochondrial O2 consumption in vitro 
was extrapolated in vivo (10, 11, 20, 21).  

Results & Discussion. Figs A & B show experimental data. pH changes 
were small (overall mean = -0.05±0.02). Between exercise intensities or 
muscles there were no differences in kPCr (proportional to the slope in Fig A: 
overall mean 1.7±0.2 min-1) or Km (mean 28±2 μM). ‘Linear model’ QMAX 
(by extrapolation in Fig A) was 56±4 μM. There was a small difference 
(P<0.005 by paired t-test) between ‘ADP-model’ QMAX for 60% and 90% 
MVC in quadriceps (26±2 vs 34±2 mM min-1, respectively) and calf (32±4 vs 
37±3 mM min-1); overall mean was 33±2 mM min-1 (Fig B). Figs C & D 
show the comparison with the literature. The present results are consistent 
with the few 31P MRS studies covering a wide range of [ADP] (13-15), 
including one comparing 31P MRS with a detailed kinetic model (4) (Fig C), 
and with studies in which end-exercise [ADP] and initial-recovery V are used 
to estimate QMAX (Fig D). ADP-model values are substantially lower than 
AVD estimates from exhausting knee extension (which activates rate-limiting 
TCA cycle enzymes maximally (5)) (Fig D), and a study (6) in which such 
values can be related to [ADP] during submaximal exercise (Fig C). Linear-
model values are less discrepant, but arguably less conceptually satisfactory. 
As noted (20), AVD estimates are substantially greater than estimates from in 

vitro data, perhaps due to ‘parallel activation’ mechanisms (22) missing in vitro. The origin of the similar discrepancy identified here may be similar, 
i.e. in different degrees of activation of such mechanisms in different kinds of exercise. Alternatively interactions between O2 supply and demand and 
cellular PO2 (6) may be complicated.  
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