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Figure 2:  ROC curves for (a) 8mm lesions/12 views, (b) 12mm lesions/12 views and (c) 8 mm lesions/
32 views. 

Figure 1:  Reconstruction of a 
phantom slice with liver lesions 
(indicated by arrows). 
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Introduction:  Classification of lesions as benign or malignant is an important medical imaging task.  It has been shown that in the liver the 
transverse relaxation time (T2) can be used to make such a classification, with malignant lesions typically having a shorter T2 than benign cysts and 
hemangiomas [1].  Obtaining a lesion T2 estimate can be a lengthy process, as data from multiple echo times (TEs) must be acquired.  This is 
particularly problematic in regions of the body such as the liver which suffer from patient motion.  Recently a radial fast spin-echo (Rad-FSE) 
technique has been developed to obtain T2 estimates within a single breath-hold during which an under-sampled set of radial k-space lines are 
acquired during a train of spin-echo periods [2,3].  Acquiring data within a breathhold reduces the effects of respiratory motion and misregistration; 
however there is time to acquire only 12-16 radial lines per spin-echo period.  The high degree of under-sampling in the Rad-FSE technique has 
motivated the development of a variety of post-processing techniques that attempt to enforce prior information to compensate for the lack of data [3-
5].  The goal of this work is to evaluate these proposed algorithms based directly on their lesion classification performance. 
Theory and Methods:  The receiver operating characteristic (ROC) curve has become a standard technique for the evaluation of 2-class classifiers in 
the medical imaging literature [6].  Here the 2 classes are benign and malignant and each proposed algorithm 
calculates a lesion T2 estimate, compares it to a threshold and decides if the lesion is benign or malignant based 
on whether the T2 estimate is greater or less than the threshold.  By classifying many lesions, the true-positive 
fraction (TPF), or sensitivity, and false-positive fraction (FPF), equivalent to 1-specificity, for the given threshold 
may be estimated for each algorithm.  Considering a range of T2 thresholds, the entire ROC curve for each 
algorithm is estimated as shown below in Fig. 2.  A higher ROC curve indicates better performance, thus the area 
under the curve (AUC) is a common metric for ranking classifiers.  A perfect classifier would have AUC=1, 
while a classifier that guesses randomly between benign and malignant would have AUC=0.5.  To calculate the 
TPF and FPF, the true class of each lesion must be known.  Thus a simulated imaging chain including a detailed 
computer-generated abdominal phantom has been developed which allows for the inclusion of random liver 
lesions (Fig. 1) [7].  A prior probability distribution for each lesion class, pr(T2|benign) and pr(T2|malignant) is 
assumed and by sampling from each distribution and randomly placing lesions within simulated abdominal 
slices, k-space data sets are created.  The algorithms evaluated here are standard filtered back-projection (FBP), 
an alternating projection (POCS)-like technique that enforces prior information including object support, signal 
decay behavior and phase constraints [4] and an echo sharing algorithm (ES) which mixes data at different TEs 
to interpolate additional k-space data [3].  Two sizes of data sets were considered, 12 and 32 radial k-space lines per TE, with 256 samples per line 
and ETL=16 in each case.  The echo spacing was 9 ms, TR=1000 ms and slice thickness = 8 mm.  Noise levels consistent with in vivo acquisitions 
were employed in all simulations.  Both 8 and 12 mm diameter spherical lesions were considered as evaluating performance for small lesions is of 
particular interest.  For each lesion size approximately 1600 benign and 1600 malignant lesions were utilized to determine the ROC curves. 
Results and Discussion:  The ROC curves obtained from the simulated data are given in Fig. 2.  All algorithms have difficulty in classifying 8 mm 
lesions with only 12 lines per TE (Fig. 2a), where it is shown that each algorithm performs similarly, with AUCFBP = 0.78, AUCPOCS = 0.76 and 
AUCES = 0.77.  This poor performance is understandable considering that the lesion diameter is equal to the slice thickness, resulting in a large 
amount of partial volume in addition to the degree of under-sampling.  For 12 mm lesions with the same amount of data, all algorithms improve their 
performance (Fig. 2b).  In this case AUCFBP = 0.82, AUCPOCS = 0.78 and AUCES = 0.94, indicating that the echo sharing algorithm performs best in 
this situation.  If the amount of data is increased to 32 lines per TE, the performance on 8 mm lesions is significantly improved (Fig. 2c), with 
AUCFBP = 0.90 and AUCES = 0.89.  This increase in data from 12 to 32 lines can be achieved in vivo with a slightly increased breathhold and a bent 
trajectory [8].  In this case the POCS method was not considered due to its lengthy reconstruction time and relatively poor performance in other 
situations. 
Conclusions:  These results show that the choice of reconstruction algorithm can have a significant impact on performance and that choosing the best 
algorithm depends on lesion size and the amount of data available.  The use of simulated data gives the knowledge of ground truth and allows for the 
consideration of small lesions and partial volume effects that are difficult to evaluate with physical phantoms or in vivo data.  This type of task-based 
evaluation has clear advantages over traditional metrics of image quality such as SNR, CNR and MSE which do not directly measure the ability to 
classify lesions, the ultimate purpose of these imaging techniques.  Acknowledgements:  Work supported by NIH grants CA099074, HL085385, the 
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