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Introduction: Center-out, ramp sampled, radial k-space trajectories are used in Ultrashort TE (UTE) imaging to minimize the time 
between the end of the RF excitation and the beginning of data acquisition.  Data acquisition commences at the beginning of the 
readout gradient ramp and continues to the end of the “flattop.”  The gradient amplitude and slew rate are determined by the sampling 
bandwidth, field of view and the maximum dB/dt limit imposed by the hardware or by physiological stimulation.  However, time 
delays on the three physical gradient axes can differ by up to several microseconds.  With high slew-rates and high resolution imaging, 
artifacts can be seen with errors in the timing of less than 0.25μsec.  Gridding is typically used for image reconstruction and if the 
actual trajectory is known, image quality can be maintained despite small errors in the gradients. Fig. 1 compares the k-space 
trajectories of an ideal k-space trajectory compared to a trajectory with a difference of 2 μsec between the X and Y gradients.   
 
Theory: We can think of a logical set of gradients (Lx(t), Ly(t) and Lz(t)) as being the coordinate 
system of the patient.  The gridded reconstruction must be performed in this coordinate space. 
There is also a set of physical gradients (Px(t), Py(t) and Pz(t)) that is the source of the inherent, 
anisotropic delays.  The delays can be expressed by the following expressions: Px(t-tx), Py(t-ty) 
and Pz(t-tz) where the delays on the physical gradients are denoted by tx, ty and tz. We first express 
the physical gradients in terms of the rotation matrix applied to the logical gradients.  We then 
apply the delays to each of the physical axes as expressed by the logical coordinates.  Then we 
apply the inverse of the rotation matrix to the delayed physical co-ordinates and give these to the 
gridding reconconstruction program.      
 
Results and Discussion: Oblique images of a phantom with sharp edges were acquired and 
reconstructed with a gridding routine.   In the image in Fig. 2a), the average gradient delay was 
applied to all gradient waveforms resulting in signal pileup near the edges of the phantom.  In the 
image in Fig. 2b), the physical delays were mapped back to the logical (patient) coordinate system 
as described above resulting in 
sharpening of the edges of the 
phantom. The physical gradient 
delays can be found by measuring 
the gradient trajectories of the 
readout gradients applied on each of 
the gradient axes.  Duyn’s method 
[1] or self-encoding [2] may be used 
for measuring the trajectories but 
we chose self-encoding in a MnCl 
doped phantom because the SNR of 
the trajectory measurement is 
constant regardless of position and 
extent of k-space.  The initial ramp 
portion of the gradient waveform 
results in a parabolic k-space 
trajectory that we fit, numerically with the delay time as one of the fit parameters.  The three, fitted, physical delay times were then 
used by the radial imaging recon.  We also compared measuring the all rays (256^2 matrix -> 804 rays) with measuring just full scale 
positive and negative rays on the three principle axes (six rays total) and using linearity to generate the intermediate rays.  Gradient 
fidelity and linearity were such that all three methods produced images indistinguishable to the eye.   
 
Conclusion: Measurement of gradients with self-encoding yields very high signal to noise trajectories independent of the extent 
covered in k-space.  Measuring all 804 radial rays is very time consuming and added no image quality improvement over measuring 
full positive and negative trapezoidal waveforms on just the three principal axes.  Both these measurements would have to be repeated 
should the slew rate or gradient amplitude be changed.  Fitting the delay of the three physical gradients and applying these to all 
possible radial readout waveforms is sufficient.  By mapping from logical to physical gradient axes, applying the physical delays and 
mapping back to the logical frame allows a small number of calibrations to work with any radial trajectory in any imaging plane. 
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Figure 1: The origin of k-space in the 
presence of a 2 μsec delay on the y 
gradient relative to the x channel, 
shown in red compared to the ideal in 
green. Note the slight curvature of the 
red trajectory. 
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Figure 2. Oblique 
images reconstructed 
a) without considering 
the anisotropy of the 
physical gradients and 
b) by mapping the 
correct physical 
gradient delays back to 
the logical (patient) co-
ordinate system. By 
knowing the three 
gradient delay 
parameters, images in 
all planes can be 
reconstructed. 
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