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Introduction:  In this work, we attempted to correct the non-uniformities generated in lower limbs (calf and thigh) NMRI by RF inhomogeneities.  Correction 
techniques are based in general on prior knowledge about the intensity distribution inside tissues  (or tissue magnetic properties) which is not straightforward in case of 
pathological muscles, as in neuro-muscular disorders.  For our application, we can rely only on the assumption of signal uniformity in the subcutaneous fat and we need 
to estimate the non uniformity values in muscles. An interpolation technique like spline or polynomial would not be efficient because the muscle area is large relative to 
fat. Parametric models are an attractive solution to the problem. Based on the observation that the non uniformity field is a low frequency signal, we expressed it as a 
finite sum of discrete cosine functions.  The estimation of the parameters of the non uniformity field was done through the minimization of a convex cost function.  
 
Theory:  A convenient way of designing a correction method consists in modeling the intensity non uniformity as resulting from a smooth multiplicative field. Hence 
we can write :  )()()()( vnvBvUvI +=  where v=(x,y,z) refers to a voxel location, I  the observed MRI volume, U the uncorrupted one,  B  the non uniformity field and n 
is the noise.  Knowing that the non uniformity field is a smooth function, we can approximate it by a finite sum of cosine discrete functions.  The choice of the cosine 
functions is motivated by the fact that they represent a discrete orthogonal basis. Hence we can define the non uniformity field as the following: 

                            
The estimation of the non uniformity field amounted to computing the vector ),,( ,,0,0,10,0,0 zyx nnnhhhh K= of coefficients of the cosine functions. Under the 

assumption that the signal in the subcutaneous fat region (noted sfΩ ) was uniform and that it can be approximated by its mean value (called fμ ). The estimation can 

be performed by minimizing the following quadratic cost function [1]:  
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The efficiency of such an approach is highly dependent on the domain sfΩ . The non homogeneity field can be reconstructed if the observed samples are uniformly 

distributed in the image domain. This was not the case of our application where the hypothesis of signal homogeneity was valid only for subcutaneous fat. The system 
obtained using only pixels of subcutaneous fat area was badly conditioned because the restriction of the cosine functions to this domain is no longer orthogonal. Very 
important oscillations were observed in the regions that were not sampled. To overcome this problem we considered an additional constraint that aimed at reducing the 
oscillations of the non-uniformity field. Such a constraint can be modeled by the total variation of this function.  Thus, we estimated the cosine functions coefficients by 

minimizing the following cost function:   
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λμ .  The second term is the total variation of the field in the entire domain. Its 

role was to reduce the oscillations in the resulting function. λ  is a parameter that defines the trade-off between the two constraints. The proposed cost function is 
convex and the optimal value of  h were obtained using a gradient conjugate approach.  
 
Exerimental validation We evaluated the performance of the proposed approach and compared the results to the method introduced in [1], which is the same as our 
approach when 0=λ . The images we used are acquired on a 3.0 T whole body scanner (Trio TIM, Siemens Healthcare) using a circularly polarized coil. 
Phantom data :  2D images of a water phantom were acquired using a standard FLASH 2D PDw sequence (TR=7s, TE= 4.92 ms, rf flip angle=45°) We imposed the 
uniformity constraint only on a peripheral region and then evaluated the coefficient of variation in a central region of the phantom.  The results reported in table [1] 
showed that a high number of cosine functions better approximated the non-uniformity function. We noticed also that for higher value of k, method [1] results in 
important oscillations due to the bad conditioning of the linear system. Such a limitation was overcome using our constrained model.  
Dixon Images:  3D PDw extended 2 pt Dixon images (TR=10ms, TE1=2.45 ms TE2=3.675 ms , rf flip angle =10°) were acquired in thighs of 4 healthy subjects. To 
estimate the parameters of the non-uniformity field, we segmented the subcutaneous fat in the fat image (using a simple thresholding). Then, we used the estimated non-
uniformity field to correct water images. To quantify the performance of the approach, we computed the coefficient of variation (CV) on the subcutaneous fat region in 
the fat volume (CvF) and on the muscle region in the water volume (CvM).  Table [2] shows the CVs obtained for different values of λ . Introducing the total variation 
term, led to a more uniform intensity inside the muscle (although this region was not used in the estimation). A normal case example is given in figure [2]. Regarding 
pathological cases, figure [3] obtained in a congenital dystrophic patient, illustrates that our method is adapted to normalize fatty infiltrated muscle intensity using the 
information of the fat image in the subcutaneous fat area.  
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 CvF CvM 
  before 0 100 1000 Before 0 100 1000 
data1 0.378 1.1998 0.2624 0.2951 0.231 1.1543 0.3222 0.1694 
data2 0.4643 13.628 7.9223 0.3366 0.1664 0.3242 0.2612 0.1003 
data3 0.525 51.349 4.4301 0.39 0.2617 4.7851 0.4738 0.1392 
data4 0.4852 242.98 1.1327 0.3829 0.2542 19.445 0.3459 0.1644 

 CvF (Peripheral area) CvM  (Central area) 
k 0=λ  31e=λ  0=λ  31e=λ  
3 0.038 0.0405 0.0584 0.0468 
5 0.0127 0.0302 0.0570 0.049 
7 0.0122 0.0161 1.9828 0.0444 

Table1 Coefficient of variation using our method 
and the method introduced in [1] for the phantom 

Figure2. An example of a 2D slice of the thigh 
muscle (data3). From left to right values (i) water 
image before correction (ii) Correction using 
( 0=λ ) (iii) Correction using ( 31e=λ ) 

Table2.  Coefficients of 
variation computed on 
corrected image using 
different values λ   for (k=4)      

Figure 1. Example of correction of a phantom 
from left to right (i) image before correction 
and the corrected  images  using (ii) 
( 0=λ and k=7)  (iii)  ( 31e=λ and k=7)   

Figure3. An example of thigh muscles water 
image in a congenital dystrophy patient: before 
correction (left) and after correction (right) 
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