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Introduction
Motion estimation (ME) and motion compensation (MC) are both essential to video compression [1], which have also been successfully applied to dynamic MRI
with reduced k-space acquisition as baseline estimation adjunct for enhancing image reconstruction. [2] However, ME and MC have not been exploited as a
standalone approach for direct dynamic MRI reconstruction. The current main challenges come from the absence of full-resolution frames. To address this issue,
this work proposes a reconstruction technique based solely on the phase-correlation ME method [3] to estimate the motion vectors (MVs) needed for reconstruction,
without incorporating extra computational routines as in previous works. [2,4] The experimental results show that the proposed method successfully reconstructs
full-resolution dynamic frames at substantially reduced acquisition time without incurring aliasing artifacts and loss of object motion information. The performance
is competitive even with acquisition of only the central k-space for most of the frames.
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Therefore, we can obtain the displacement, which is the MV, by finding the peaks in Eq. (3) corresponding to the maximal correlation. The MVs can then be used
to recover full-resolution frames in a block-by-block manner. The phase-correlation method estimates the MVs accurately since translation of blocks remains
identical even at low spatial-resolution. Furthermore, the phase-correlation method is relatively insensitive to changes in contrast, since Fourier phases are not
affected by shift or multiplication of the image contrast.

Methods

With a given accelerating factor, the sampling pattern in k-t domain is depicted in Fig.1. Down-sampled image frames at low spatial resolution are used as training
data (called the P frames). Several full-sampled frames are used as reference frames (called the I frames). In our testing series containing 30 time frames, 5
reference frames are picked up. Typical implementation, divides each P frame into small blocks 4x4 pixels in size, with the blocks extended to 8x8 pixels centered
around them for estimating MVs because increased overlapping area leads to better estimation. A 2-D Hanning window is applied to each 8x8 block to increase the
weight of the formerly defined 4x4 region, to which an MV will be assigned. Phase-correlation ME is then performed between corresponding 8x8 blocks on two P
frames. In general, the motion is not purely translational, which results in multiple peaks in cross-power spectrum as shown in Fig.2. While the highest peak in
correlation map usually provides the best displacement match between the 8x8 blocks, it may not necessarily be the best for the smaller 4x4 block. Therefore,
several candidates are selected instead of just one highest peak. The candidate with highest image correlation [4,5] would best represent the MV for the 4x4 block.
The reconstruction employs MC by applying MVs on the blocks of each I frame to obtain the compensated frames, with the residue compensated as well. Results
from different acceleration factors are compared with their counter-part using k-t BLAST [4] , k-t FOCUSS[2], and BM for benchmarking.

Results and Discussion Fig.3: 8-fold accelerated selected images and x-t spaces of the indicated region of interest
Four sets of cine cardiac images have been tested with the proposed reconstructed by phase-correlation (a), k-t FOCUSS (b), k-t BLAST (c), BM (d), and
method. Short-axis 2D TrueFISP with ECG gating was performed on non-accelerated reference (e).
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Root mean square (RMS) error is shown in Fig.4. BM reveals high
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the sampling trajectory and underlying sequence programming is
relatively straight-forward.

Fig.4: RMS error from acceleration of 3 to 10 within full FOV (left) and within myocardium
Conclusion (right) of the proposed method (blue), k-t BLAST (red), and k-t FOCUSS(green).
A robust method for directly reconstructing dynamic images by ME
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