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Introduction 
Subject motion during MRI scans can severely affect the acquired images and render them unsuitable for further post-processing or diagnosis. There 
exist a number of techniques that reduce motion artifacts by either faster acquisition (e.g. parallel imaging) or oversampling portions of k-space (e.g. 
PROPELLER [1]) or a combination of both. Also navigator techniques can be used to detect and correct motion. However, in many MR applications 
cartesian sampling of k-space is used. High resolution techniques, such as susceptibility weighted imaging (SWI), have acquisition times in the order 
of minutes even if parallel imaging is used. This increases the chance of motion artifacts.  
Because of the Fourier shift theorem, translations that occur in between the acquisition of two k-space lines can be represented using a phase gradient 
and offset. Methods to correct the phase of k-space lines by minimizing a quality measure have been proposed in the past [2,3]. We propose to 
address the optimization problem using a genetic algorithm. Since genetic algorithms are inherently parallelizable, such an approach could benefit 
greatly from advances of modern computer technology.  
Methods 
Algorithm: Two genetic algorithms were developed and implemented in Matlab 
(Mathworks, USA). The set of phase gradients and phase offsets for all k-space 
lines represented a genome. Both algorithms were based on the following 
principle: 

1. Initialization of p genomes. 
2. Repeating the following steps until the maximum number of N iterations was 

reached:  
a. Multiplication of the p genomes to a total number of P genomes. 
b. Evaluation of each of the P genomes by: applying the respective phase 

shifts to k-space, computing the Fourier transform and image metric. 
c. Selecting the p best solutions. 

The two algorithms differed in the multiplication step. The first algorithm 
mimicked non-sexual reproduction. A random number of mutations was applied to 
each genome at every multiplication. Mutation rates between 0.25% and 25% were 
investigated. In case of a mutation a Gaussian distributed random number was 
added to (or subtracted from) the value representing the shift.  
The second algorithm used following strategy for multiplication: for each pair of 
the p best solutions, a number children were generated by exchanging a random 
number of genes. After this cross over phase, mutations were applied in the same 
manner as in the first algorithm. 
Four different quality measures were tested: entropy [2], normalized gradient squared (NGS) [3], signal in the background and local 
coherence (LC) [4] in the background.  
Data: The performance was evaluated on simulated data as well as on slices of an SWI data-set to which artificial motion (random with a Gaussian 
distribution as well as periodic) was applied. The SWI [5] data-set was acquired on 1.5 T Siemens Vision (Siemens, Germany) scanner. The 
parameters were TE=40ms, TR=65ms, α=25°, matrix=256x192x48, FoV=256x192x96 mm3. 
Results 
Using the same parameter sets (number of iterations, population size etc.) the first algorithm led to significantly better images (less ghosting and 
blurring) than the algorithm allowing cross-overs. The best results were achieved using NGS and entropy. Artifacts were corrected best if the 
mutation rate was low (≤ 1%). However, modifying only one k-space line at a time did not lead to a substantial reduction of artifacts. Comparing the 
number of iteration versus population size, showed that a stronger dependency on the number of iterations than on population size. 
Fig. 1 shows an exemplary data-set. Artificial motion is added to the original image (fig. 1(a,d)) resulting in a corrupted image (fig. 1(b,e)). The 
corrected image is shown in fig. 1(c,f). The mutation rate was 0.5%. The displacements were drawn from a Gaussian distribution with σ=0.5 voxels. 
Discussion 
The better performance of the first algorithm can probably be attributed to the larger changes in k-space between two solution vectors that can be 
caused by the cross over. This hypothesis is supported by the fact that increasing the mutation rate does not lead to improved images.  
Although LC was shown to be very sensitive to ghosting artifacts, it was the least usable minimization criterion. Furthermore LC and the signal in 
the background criterion suffered from requiring a definition of the background. This would make them less robust in practical applications. 
Conclusions 
Using a genetic algorithm for correction of motion artifacts was shown to be feasible. We think that it is a promising approach because of its inherent 
parallelizability. Using implementations of the FFT on GPUs might allow implementations that are sufficiently fast for every day applications. 
Further studies to optimize the parameters such as mutation rate, population and minimum number of iterations are still required. However, first 
results indicate that a significant increase in computation speed can be expected. 
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Fig. 1: Original magnitude (a) and phase (d) image; with 
artificial motion artifacts (b,e); corrected images (c,f). Note 
that also motion present in the original image was cor-
rected. This is especially apparent in the phase images (d,f). 
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