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Figure 1: Comparison between the KM and the simulated diffusion for varying
exchange times: D(t) in the parallel direction (a) and the perpendicular direction
(b), K(t) in the parallel direction (c) and the perpendicular direction (d). The KM
approximation given by eqn (2) is fitted through each series of data points in (c)
and (d) and the fitted and real values for τex are listed. 
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Figure 2: Relative errors made by the KM in the long term diffusivity D∞ (a) 
and the fitted exchange time τex,fit (b). The errors increase for decreasing τex and 
increasing angle θ.  
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Introduction 
Chemical exchange models have been frequently applied to quantify measurements of diffusion in living tissues. While the simplicity of such models 
is attractive, the precise relationship of the model parameters to tissue properties may be difficult to ascertain. Here we investigate numerically a two-
compartment exchange (Kärger) model as applied to diffusion in a system of parallel cylinders with permeable walls.  
 

Theory 
The Kärger model (KM) [1,2] considers 2 compartments, each 
containing a fraction p1 and p2 of the water molecules. The water 
residence times for the 2 compartments are τ1 and τ2 and the time τex= 
τ1 p2 = τ2 p1 is the water exchange time for the system. The diffusion in 
each compartment is assumed to be Gaussian with a diffusion 
coefficient D1 and D2. The KM predicts a constant diffusion coefficient 
DKM and a time-dependent diffusional kurtosis KKM according to [3]:  

,= 2211KM DpDpD +      (1) 
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The KM is applied here to a tissue model consisting of parallel 
randomly packed identical cylinders with radius R. The space inside 
the cylinders is referred to as the intracellular space (ICS) and the 
space outside as the extracellular space (ECS). The ICS and ECS are 
characterized by the bare diffusion coefficients Di and De, and 
residence times τi and τe.  
Due to coarse-graining, the KM becomes valid when the exchange is 
barrier limited and the diffusion is in the long time limit, where the 
diffusivities in both the ECS and the ICS are constant with 
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where θ is the angle with respect to the cylinder axis and λ is the ECS 
tortuosity for the perpendicular direction. The KM description of the 
diffusion in a given direction θ corresponds to identifying D1 and D2, 
p1 and p2 as respectively Di,∞(θ) and De,∞(θ), 1-α and α in eqns (1) and 
(2) with the exchange time τex= τe(1-α) = τiα. Due to the anisotropy of 
the tissue model, DKM  and KKM  depend on θ, as shown in Figure 1. 
 

Methods 
To evaluate the accuracy of the KM, the diffusion is simulated in a 
geometry of cylinders, with radius, packing density and bulk 
diffusivities in the ICS and ECS chosen similar to those observed in 
the human corpus callosum [4]: R = 0.63 μm, α = 0.5, Di = 0.5 μm2/ms 
and De.= 2 μm2/ms. The time-dependent D(t) and K(t) in a given 
direction were simulated in C++ based on the dynamics of 2.0×106 
random walkers [5]. A range of values between 0.008 μm/ms and 4 
μm/ms for the membrane permeability κ were considered such that the 
corresponding exchange varied between 0.075 ms and 20 ms.  
 

Results 
Figure 1 shows the comparison between the KM and the numerical results. The diffusion coefficient D|| in the parallel direction (Figure 1(a)) is 
independent of the permeability and agrees with the KM theory, while D⊥ in the perpendicular direction depends strongly on τex and agrees with the 
KM theory for low permeabilities (long τex) at long observation times. The relative error in the diffusion coefficient when using the KM is shown in 
Figure 2(a) for different directions. The diffusional kurtosis K|| monotonically decreases with time in the parallel direction (Figure 1(c)), whereas in 
the perpendicular direction (Figure 1(d)), the kurtosis first peaks before decreasing towards zero. The KM agrees for long τex with the simulated 
kurtosis in the time-interval for which it decreases with time. Figure 1 (d) shows that, although the KM fits all the data curves well, the fitted values 
for τex deviate from the real τex for short τex. The relative error in τex when fitting the data to the KM is shown in Figure 2(b) for different directions.  
 

Discussion 
The present study shows that the KM, although highly idealized, can accurately model the diffusion in a two-compartment system for long 
observation times, providing the compartment diffusivities are time-independent and the permeability is low enough such that the exchange between 
the compartments is barrier-limited. The time-independent KM diffusivity does not depend on the exchange time, but the time-dependence of the KM 
kurtosis allows the exchange time to be determined. The simulations show that for more permeable membranes, the KM derived exchange times are 
overestimated. The simulation results shown here for a geometry of parallel cylinders can be applied to the diffusion in tissues with a strongly aligned 
fibrous microstructure such as found in brain white matter. Due to the tissue anisotropy, the KM kurtosis along and across the fibers contains 
complementary information. The initial KM kurtosis in the direction along the fibers reflects the diffusional heterogeneity between the ICS and the 
ECS, whereas in the perpendicular direction, it is determined by the fiber volume fraction. Hence, the KM could potentially provide important 
information for assessing white matter pathologies. The results for diffusion in the perpendicular direction can also be extrapolated qualitatively to 
isotropic tissues and cell suspensions. 
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