## Radio frequency (B1) field mapping at 7T using 3D SE/STE EPI technique

## A. Lutti<sup>1</sup>, C. Hutton<sup>1</sup>, J. Stadler<sup>2</sup>, O. Josephs<sup>1</sup>, O. Speck<sup>3</sup>, C. Tempelmann<sup>4</sup>, J. Bernarding<sup>5</sup>, and N. Weiskopf<sup>1</sup>

<sup>1</sup>Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom, <sup>2</sup>Special Lab Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany, <sup>3</sup>Dept. Biomedical Magnetic Resonance, Institute for Experimental Physics, Otto-von-Guericke University, Magdeburg, Germany, <sup>4</sup>Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany, <sup>5</sup>Institute for Biometry and Medical Informatics, Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany

Introduction Spatial inhomogeneities in the radio-frequency (RF) field ( $B_1$ ) increase with field strength affecting quantification and contrast of images. For correction of  $B_1$  inhomogeneities, fast and robust whole-brain  $B_1$  mapping methods are essential and are intensively studied for ultra high fields. Following optimization previously implemented at 3T [1], we further optimize the spin-echo/stimulated echo (SE/STE) 3D EPI method introduced by Jiru and Klose [2] for whole-brain  $B_1$  mapping at 7T. The optimization addresses severe off-resonance effects leading to image distortion and variations in the effective flip angle,  $B_1$  inhomogeneities and refocusing of coherence pathways.



Figure 1: Difference between B<sub>1</sub> maps acquired using the AFI and EPI methods with (a) and without (b) permutation of the crusher gradient polarities.

Methods Image acquisition: 3D EPI data were acquired on two subjects on a 7T whole-body system (Siemens Medical Solutions, Germany), operated with head-only CP transmit and 24-channel receive coils (Nova Medical, Inc., Wilmington MA) with the following parameters: matrix size 48x64x48, 4x4x4 mm<sup>3</sup> resolution, acquisition time 3min 48s. Distributions of B<sub>1</sub> fields were calculated from the ratio of STE (nominal flip angle  $\alpha$ ) and SE (nominal flip angle  $2\alpha$ ) images for different values of  $\alpha$  [2]. To speed up acquisition and reduce spatial distortion, 2D GRAPPA parallel imaging was implemented with acceleration of 2 along the phase and partition directions. The reference lines for the calculation of the GRAPPA kernel were acquired as a separate fully encoded image (48s acquisition time). The echo times were 35.9 ms and 67.55 ms for the SE and STE images respectively. The readout time was 12.96 ms for a bandwidth of 2298 Hz/Px. An additional B<sub>0</sub> map was acquired for correction of residual image distortion (acquisition time of 2 mins). Hamming-filtered sinc SE and STE pulses (time-bandwidth product of 6) were used. In order to minimize off-resonance effects, the minimal RF pulse duration was used for each nominal  $\alpha$ , maximizing the RF voltage and effective B<sub>1</sub> amplitude. Accurate B<sub>1</sub> estimation requires high signal intensity in the SE image, i.e.,  $\alpha_{\text{local}} \approx 90^{\circ}$  at every voxel location, to avoid excessive noise and bias. To fulfil this requirement under the large B1 deviations present in the human head at 7T (~50%), 15 image volumes were acquired with nominal  $\alpha$  ranging from 240° to 100° by steps of 10°. Each volume was acquired in 12s for a repetition time TR of 500ms. The polarity of the crusher gradients was

inverted along the read, phase and slice directions successively (*permutation*) to avoid the refocusing of undesired magnetization coherence pathways across excitations at this short TR value. In order to assess the accuracy of the method, we also acquired B<sub>1</sub> maps with the widely used AFI method [4]. **Image post-processing:** Artefactual voxel displacements along the phase encode direction (R->L) were corrected by B<sub>0</sub> fieldmap-based *unwarping* [3]. For each voxel, 6 data points with maximum intensity in the SE image were selected out of the 15 repetitions. Local flip angles were estimated by a linear regression of nominal versus local flip angles. The standard deviation of the result (SD) was used as a measure of the goodness of fit. Voxels with SD > 5 p.u. were masked out of the images and the missing values were estimated by averaging those of the remaining neighbouring voxels (*padding*). In order to illustrate the accuracy of the technique, the estimated 3D EPI B<sub>1</sub> maps were used to correct for flip angle inhomogeneities in T<sub>1</sub> maps acquired at 7T using a dual angle 3D FLASH acquisition [5].



**<u>Results</u>** All flip angle maps shown here are normalized to the nominal flip angle (= 100 p.u.). Figure 1 represents differences in measured flip angles between the 3D EPI and AFI methods with (a) and without (b) permuting crusher gradients. When crushers were permuted, the  $B_1$  maps agreed within a 5 p.u. margin with the AFI method [4] over most brain regions (see figure 1 a). The main areas of improved spoil



method [4] over most brain regions (see figure 1 a). The main areas of improved spoiling were the ventricles probably due to the long  $T_2$  times of cerebrospinal fluid and the temporal lobes and cerebellum probably due to the low  $B_1$  field. However, significant discrepancies remained in the latter regions due to low signal levels for both



Figure 3: Maps and whole-brain histograms of  $T_1$  values uncorrected (a) and corrected (b) for flip angle bias. After correction, the  $T_1$  values are found highly homogeneous throughout the brain, illustrating the accuracy of the  $B_1$  mapping method.

AFI and EPI methods. Minimizing the RF pulse duration for each nominal flip angle value reduced offresonance effects in the orbital frontal cortex where high  $B_0$  gradients are present, leading to changes up to 30 p.u. in the measured flip angles (not shown). Figures 2 a) and 2 b) show a typical  $B_1$  map and its associated error SD map (goodness of fit). Significant SD values (>5%) were observed in the temporal lobes and cerebellum as well as in the ventricular system. Figure 2 c) shows scan-rescan differences between two  $B_1$  maps acquired successively. Regions of large SD corresponded with regions of large instabilities. Figure 3 shows  $T_1$  maps and whole-brain histograms acquired at 7T based on dual angle 3D FLASH acquisition before (a) and after (b) correction with the EPI  $B_1$  map [5]. The severe inhomogeneities in  $T_1$  values due to  $B_1$  variations were removed, particularly in the central and peripheral brain regions (note that the wide scaling of the histogram in figure 3 b) does not allow to distinguish between grey matter and white matter  $T_1$  values). Only some residual bias in the inferior parts of the temporal lobes and cerebellum remained, corroborating the high accuracy and precision of the  $B_1$  map.

<u>Conclusion</u> We have optimized the SE/STE 3D EPI method for fast, accurate and precise whole-brain  $B_1$  mapping at 7T. The improvements resulted in a method robust against the severe  $B_0$  and  $B_1$  inhomogeneities encountered at ultra high field. Permutation of the crusher gradients led to a reduced sensitivity of the method to transverse coherence effects, an important feature at all field strengths. At field strength <7T, the number of nominal values can be reduced due to smaller  $B_1$  inhomogeneities, leading to a significant reduction in scan time.

**References** [1] A. Lutti *et al*, MRM, under revision. [2] F. Jiru and U. Klose, MRM **56**:1375-1379 (2006). [3] C. Hutton *et al*, NeuroImage **16**:217-240 (2002). [4] V.L. Yarnykh, MRM **57**: 192-200 (2007). [5] G. Helms *et al*, MRM, **59**:667-672 (2008).

Acknowledgments Funded by the Wellcome Trust<sup>1</sup>, BMBF grant 13N9208 and 01 EQ0605<sup>3</sup>