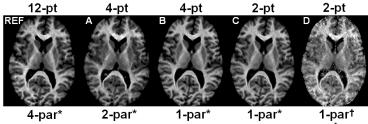
Reconstruction of Bound Pool Fraction Maps from Subsets of Cross-Relaxation Imaging Data at 3.0 T: Accuracy, Time-Efficiency and Error Analysis

H. R. Underhill^{1,2}, C. Yuan¹, and V. L. Yarnykh¹

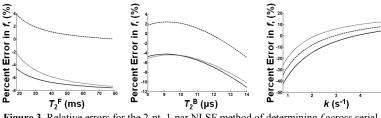
¹Radiology, University of Washington, Seattle, WA, United States, ²Bioengineering, University of Washington, Seattle, WA, United States

Introduction: Cross-relaxation imaging (CRI) describes the kinetics between mobile water protons (free pool) and macromolecular protons (bound pool)¹. CRI has demonstrated a strong correspondence between the bound pool fraction, f, and major fiber tracts in the human brain in vivo², which make it advantageous for imaging white matter (WM) disease (e.g. multiple sclerosis [MS]³). Broad clinical utility of CRI has been largely limited by acquisition time. At 1.5T, a time-efficient three-dimensional (3D) whole-brain CRI technique has been enabled by using the pulsed off-resonance saturation method with a limited number (four) of offset frequencies². The key feature of this technique is the determination of the principle kinetic parameters of the two-pool model¹ (f; and the rate constant, k) by constraining the transverse relaxation time of both the free (T_2^F) and bound (T_2^B) pools to reduce the number of fitted parameters and limit the number of off-resonance measurements. Recently, further reduction in scan time at 1.5T has been proposed by Yarnykh via an algebraic approach that captures both f and k with only two experimental off-resonance measurements⁴. Alternatively, Lee et al⁵ have described a time-efficient approach at 1.5T that reduces acquisition time by applying an additional constraint to k in order to solely determine f. Whole-brain CRI has been recently demonstrated at 3.0T⁶. Implementation at 3.0T required optimization of parameter constraints at the increased field-strength to accurately determine k and f, and correction of both B_0 and B_1 non-uniformities⁶. In this study, we sought to identify the effects of time-efficient protocols and reconstruction methodology on the determination of f at 3.0 T. In addition, a pathological MS lesion is simulated to determine the error introduced via the application of various parameter constraints during the optimal time-efficient protocol at 3.0T.

Methods: A healthy male volunteer (age 35years) was imaged at 3.0 T (Philips Achieva, Best, Netherlands) with a transmit/receive head coil. Twelve pulsed *Z*-spectroscopic data points with variable offset frequencies (Δ) of the off-resonance saturation pulse ($\Delta = 1, 2, 4, \text{ and } 8 \text{ kHz}$; duration 19 ms) and effective flip angles of 700°, 850°, and 990° were acquired with a 3D spoiled gradient echo pulse sequence (TR/TE = 43/2.3 ms, $\alpha = 10^\circ$) as previously described^{2.6}. A reference image for data normalization was obtained with $\Delta = 96 \text{ kHz}$ (no MT effect is observed at this frequency) for each effective flip angle to ensure that the transmitter operates with identical gain settings. A complementary R_1 map necessary for parameter fitting was obtained using the variable flip angle (VFA) method with a 3D spoiled gradient echo sequence (TR/TE = 20/2.3 ms, $\alpha = 3, 10, 20, \text{ and } 40^\circ$). All *Z*-spectroscopic and VFA images were acquired with FOV = 240×180×180 mm, matrix = 160×120×60, resolution 1.5×1.5×3.0 mm (zero-interpolated to $1.0\times1.0\times1.5$ mm), and one signal average. Scan time was 3.33 and 1.55 minutes per point for *Z*-spectroscopy and VFA, respectively. To account for effects of B_0 and B_1 heterogeneity, whole-brain B_0 and B_1 maps were acquired using previously described techniques^{7,8} to establish actual off-resonance of the saturation pulse and determine actual flip angles during parameter fitting. Scan time for B_0 and B_1 maps was 2 and 3 minutes, respectively.


off-resonance of the saturation pulse and determine actual flip angles during parameter fitting. Scan time for B_0 and B_1 maps was 2 and 3 minutes, respectively. The reference standard for f was obtained from 4-parameter fitting (k, f, T_2^F , and T_2^B) using 12-pt data and a previously described non-linear least squares fitting (NLSF) method^{2,6}. The other reconstruction methodologies included: 1) 2-parameter fitting with 4-pt (990°; $\Delta = 1, 2, 4, \text{ and } 8 \text{ kHz}$) data; 2) 1-parameter fitting with 4-pt (990°; $\Delta = 1, 2, 4, \text{ and } 8 \text{ kHz}$) data; and 3) 1-parameter fitting with 2-pt (990°; $\Delta = 4 \text{ and } 8 \text{ kHz}$) data. For each of these approaches, the NLSF method was used along with recognized parameter constraints ($T_2^F = 0.024/R_1$ and $T_2^F = 11\mu \text{s}$) to determine f at 3.0 T. For 1-parameter fitting, the additional constraint of f a ratio derived from previous in vivo data at 3.0T⁶, was exploited. Additionally, 1-parameter fitting of f was determined separately and independent of f using the algebraic approach described by Yarnykh⁴, where T_2^F and T_2^B are similarly constrained as in the NLSF method.

Pearson's correlation coefficient, r, was used to compare results from a variety of anatomic structures between the reference standard for f and the different reconstruction methodologies. Simulation of WM, grey matter (GM), and an MS lesion was done with a previously established model of CR1⁶.


Results: Parametric f-maps using each methodology are presented in Figure 1. All reconstruction methodologies had a strong concordance with the reference f-map, however, the 2-pt, 1-parameter algebraic technique demonstrated increased noise and weaker differentiation of grey and white matter (for example, the external capsule is ambiguous). The reference value of f from ROIs taken from within GM and WM structures was most strongly associated with the 2-pt, 1-parameter NLSF method (r = 0.95, p<0.001) and 4-pt, 1-parameter NLSF method (r = 0.90, p<0.001) and 4-pt, 2-parameter NLSF method (r = 0.87, p<0.001). Notably, estimation of f by the 2-pt, 1-parameter NLSF method tended to underestimate f in WM, while the 2-pt, 1-parameter algebraic method over-estimated f in WM. Errors consequent of parameter constraints in WM, GM and an MS lesion were systematic (Figure 3).

Discussion: The 2-pt, 1 parameter NLSF method demonstrated the strongest agreement (Fig. 2C) with the reference standard and used the shortest scan time. Although the 2-pt, 1-parameter algebraic method was computationally more efficient, scan time was the same and the results were sub-optimal at 3.0T (Figs.1D and 2D). The relatively weaker performance by the 4-pt, 2 parameter NLSF (Fig. 2A) method may have resulted from insufficient data points to accurately determine 2 parameters. Error consequent of parameter constraints during the 2-pt, 1-parameter NLSF method were minor for T_2^F and T_2^B . Notably, error was substantially less than previously reported for the same simulation using the 4-pt, 2-parameter method at $3.0T^6$. Error attributable to k was the principal source of error. However, across biological ranges, error was <|20%|, which was consistent with our in vivo observation that the 2-pt, 1-parameter NLSF method underestimated f.

Conclusion: Time-efficient, whole-brain parametric *f*-maps at 3.0T may be acquired with reduced experimental measurements using an NLSF approach. The substantially shortened scan time (total scan time: 21 min) while affording a reasonable estimation of *f* may improve the translatability of CRI to clinical medicine. **References: 1.** Henkelman *MRM* 1993;29:759-66 **2.** Yarnykh *Neuroimage* 2004;23:409-24. **3.** Davies *Multiple Sclerosis* 2004;10:607-13. **4.** Yarnykh *Proc ISMRM* 2007:1765. **5.** Lee *JMRI* 1997;7:913-7. **6.** Underhill *Neuroimage* 2009;47:1568-78. **7.** Skinner *MRM* 1997;37:628-30. **8.** Yarnykh *MRM* 2007;57:192-200.

Figure 1. Parametric *f*-maps using each reconstruction methodology (*NLSF, [†]algebraic method). Notably, the 2-pt, 1-par* method (C) had the strongest agreement with the reference image, while using the shortest scan time.

Figure 3. Relative errors for the 2-pt, 1-par NLSF method of determining f across serial values of T_2^F , T_2^B , and k for GM (gray line), WM (black line) and an MS lesion (dashed).

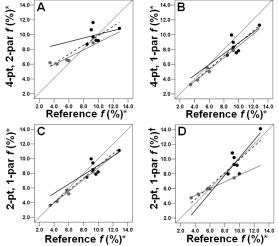


Figure 2. Scatter plots of each reconstruction methodology (*NLSF, †algebraic method) compared to the reference method (12-pt, 4-par*). Grey dots = GM, black dots = WM. Colored regression lines correspond to colored dots. The dashed line is for both GM and WM.