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Introduction:  Quantitative magnetization transfer imaging (QMTI) [1] yields the parameters – F, kf, R1f, T2f, and T2r – of the two-pool model for 
magnetization transfer (MT).  Data are usually acquired using spoiled gradient-echo sequences with shaped off-resonance saturation pulses.  The 
amplitude (or flip angle, α) and central frequency (Δ) of these saturation pulses are set according to the needs of the experiment, traditionally to cover 
the Z-spectrum uniformly [1,2].  Naturally, QMTI can benefit from optimized selection of the MT weightings.  A previous study [3] used global 
Cramer-Rao Lower-Bound (CRLB) optimization of α-Δ pairs to yield sets of 10 and 15 MT weightings for brain white matter (WM) imaging, for the 
constant-wave-power-equivalent model of QMTI.  We present a simple method for the selection of optimal MT weightings, by iterative reduction of 
the MT sampling from a discrete space.  The optimal number of MT weightings is also investigated. 
Methods:  The “reduction” method begins with a broad N-point sampling, X(N), of the Z-spectrum, and 
iteratively reduces the sampling by one point at a time, using an A-optimality criterion, to produce an 
optimized sampling.  At each iteration, all sub-samplings Xj

(n-1) (j = 1…n), with n-1 points, of the 
current n-point sampling X(n) are considered: the total estimate variance σn-1,j

2 is computed for all Xj
(n-1), 

using numerical propagation of error through the signal equation [4].  The Xj
(n-1) that results in the 

smallest increase in σn-1,j
2 relative to σn

2  (from X(n)) is retained, thereby eliminating the α-Δ pair which 
provides the least information.  The computation is repeated until the desired number of MT weightings 
is reached.  In this study, the optimized sampling was derived based on typical MT model parameters 
for WM at 1.5 T [1] (F = 0.16, kf = 4 s-1, R1f = 1.7 s-1, T2f = 35 ms and T2r = 12 μs), from N = 320 MT 
weightings (2 TRs × 5 α × 32 Δ), for the rectangular-pulse model [1].  QMTI data were acquired on a 
1.5 T scanner (Siemens, Erlangen, Germany) in a single female subject, using uniform and optimized 
10-point samplings.  The impact of sampling on reproducibility was retrospectively evaluated in 5 
healthy adults (3M/2F, age 26-38) scanned four times each, with subsets of uniform 60-point data. 
Results:  The 10-point optimized scheme derived for WM is illustrated in Fig. 1, with the optimized 
scheme of [3], and the uniform scheme of [2].  Optimizations performed for a grey matter model, and 
simultaneously for models of white and grey matter, resulted in optimization schemes with at most two 
slightly different MT weightings.  Example maps acquired using the optimized and uniform 10-point 
protocols are shown in Fig. 2, showing a clear difference in 
map quality.  Differences between the respective kf maps 
and T2f indicate that the sampling of the Z-spectrum might 
introduce systematic parameter biases.  The variance-
efficiency (= [variance × scan time]-1/2) of our optimized 
sampling method is plotted against the number of MT-
weightings, in Fig. 3.  The peak at N = 7 suggests this as the 
optimal number of MT weightings in this case.  The 
longitudinal variability of QMTI parameters from the 
optimized sub-sampling was comparable to that of the 60-
point scheme, as plotted in Fig. 4, while variability 
increased substantially for uniform sub-sampling, 
demonstrating the utility of optimized sampling. 
Discussion: The reduction method presented here is simple 
and straightforward to implement, and produces samplings 
that agree with a prior report [3].  We observe that 
optimization for multiple sets of tissue MT parameters 
makes little difference in the sampling scheme and yields 
only small gains in parameter precision.  The reduction 
method avoids repeated points and clusters of nearby points, 
a feature of more general optimal designs that tends to be 
uninformative for model validation.  Our technique is 
constrained by the initial search space, which needs to 
defined to include all of the measurements that are 
potentially of interest. In closing, optimization of QMTI 
data sampling reduces the acquisition time while 
maintaining parameter map quality and reproducibility. 
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Figure 2. Example QMTI maps from uniform (top row), and optimized (bottom row), 10-
point samplings, acquired in different subjects but on the same scanner, with identical SNR
and windowing.  Note the higher SNR in the optimized maps. 

Figure 1.  Visual comparison of sampling
schemes: uniform 10-point [1] (squares), 10-
point optimized using CRLB [3] (triangles),
and current method (circles).  Blue lines
indicate the initial 320-point search space.
Note the similar clustering of α-Δ pairs in the
optimized methods. 

Figure 3. Variance-efficiency of the optimal 
MT sampling scheme derived from 320-
points, for a WM model at 1.5 T, as a 
function of the number of MT weightings. 

Figure 4. Longitudinal variability of QMTI, 
in 5 subjects, from sampling schemes with 
60 uniform (blue), 10 uniform (green) and 
10 optimized (red) MT samplings. 
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