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Introduction: The ideal sequence for measuring ultra-short T2 spins comprises a series of infinitely short excitation pulses (δ-pulses) followed 
immediately by FID acquisition, with no delay in between. However, this sequence cannot be practically realized since RF pulses have finite duration 
(Tp) and time is required for scanner electronics to switch between transmit and receive modes.  Furthermore, off-resonance spins are affected 
differently when using conventional hard pulses having finite duration. A relatively new method known as SWIFT, sweep imaging with Fourier 
transformation [1], comes close to offering many of the desirable features of the δ-pulse sequence. The purpose of this work was to provide a 
theoretical framework and computer simulations to compare SWIFT with the δ- and hard-pulse sequences in steady state. 
 

Theory: The signal energy for a spoiled RF pulse sequence is given by ( )
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, where θ  is the flip angle, NA is the 

number of acquired points, Nmax is the maximum number of acquired points possible, E1 = exp(-TR/T1), E2 = exp(-TA/T2), TR is the repetition time, 
and  TA is the acquisition time [2]. For a given T1 and T2 there is a value of θ  producing maximum S2 which is predicted by the Ernst equation, 
cos(θmax) = E1, where θmax is the Ernst angle.  
 
Method: The NMR system was modeled by using a Bloch simulator. The Bloch equations were numerically solved using the Runge-Kutta method 
for three different types of sequences: 1) a δ-pulse, 2) a hard pulse, and 3) SWIFT. The δ-pulse sequence used TR = 4.045 ms and TA = 4 ms. The 
SWIFT sequence used Tp = 4 ms with 45 μs post-acquisition delay (giving TR = 4.045 ms). For all simulations the acquisition bandwidth was 127 
kHz. An ideal SWIFT sequence has simultaneous excitation and acquisition. However due to hardware limitations, the signal must be acquired in 
gaps within the pulse sequence. Both gapped and un-gapped simulations of SWIFT were done. Tp of the hard pulse was calibrated so that the pulse 
amplitude corresponded with the maximum pulse amplitude of the SWIFT pulse for a given θ, resulting in Tp ≤ 45 μs. They also had TA = 4 ms. For 
all simulations, T1 = T2, which is indicated by T1,2. The effect of having a resonance offset was also investigated. 
 

Results and Discussion: Figure 1 shows θmax plotted as a function of 1/T1,2 for each pulse sequence. It can be seen that the δ-pulse sequence, hard 
pulse sequence on-resonance, and SWIFT sequence on- and off-resonance (10 kHz offset) exhibit the predicted θmax. However, the hard pulse off-
resonance (5 and 10 kHz offset) show a higher θmax than the equation predicts. Figure 2 shows a plot of the 1/T1,2 values at which maximum signal 
energy (Smax

2) occurs as a function of θ . For a given θ, SWIFT achieves Smax
2 at a shorter T1,2 value than the δ-pulse sequence for both resonance 

frequencies. It is notable that Smax
2 occurs at longer T1,2 values as a  function of resonance offset when using hard pulses. The graph is useful since it 

allows determination of the value of θ yielding highest S2 for given spins of interest with a certain T1,2. Also, the value of θ  at which Smax
2 occurs is 

smallest with SWIFT, which is advantageous when RF power is limiting. Figure 3 shows a plot of S2 normalized by the δ-pulse signal energy (Sδ
2) 

produced with θ  = 20°. It shows that with on-resonance hard pulses there is some signal loss for short T1,2. In comparison, off-resonance hard pulses 
produce greater S2 from long T1,2 spins, but reduced S2 for shorter T1,2 spins. For long T1,2, SWIFT produces reduced S2/ Sδ

2, but increases toward 
unity as T1,2 gets shorter. Two different phenomena account for this behavior: 1) For SWIFT the excitation occurs approximately in the middle of the 
pulse so TA is effectively halved.  2) The gapped SWIFT has NA/Nmax = 50%, so S2 is also halved. However, making these two corrections in the 
Ernst energy equation yields good agreement. The off-resonance hard pulses also suffer from two different phenomena: 1) For short T1,2, there is 
signal loss during the pulse.  2) The frequency offset causes the effective θ to be reduced.  
 
Conclusions: SWIFT appears to be a powerful new tool for MRI. The sensitivity of SWIFT is described by the Ernst equations, which can be used to 
determine sequence parameters to maximize signal energy for specific relaxation times. Furthermore, a flip angle can be determined so that an object 
with given T1,2 will have the greatest relative energy in the system. This flip angle will be smaller for SWIFT than for δ- or hard-pulse sequences for 
a given T1,2, which helps to reduce RF power requirements. This work demonstrates that, unlike the hard-pulse sequence, SWIFT is unaffected by 
resonance offsets (eg, B0 inhomogeneity) and thus may be well suited for imaging superparamagnetic iron oxides and near metallic implants. 
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Figure. 1: Flip angle (θmax) of maximum signal energy          Figure. 2:  Relaxation rate constant (1/ T1,2) at          Figure. 3: Normalized signal energy (S2/ Sδ

2) vs 
(Smax

2) for a given 1/ T1,2                                                 which maximum signal energy (Smax
2)                       relaxation rate constant (1/ T1,2) 

            occurs as function of flip angle (θ)         
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