Simultaneous T1 and T2 mappings using partially Spoiled Steady State Free Precession (pSSFP)

P. Loureiro de Sousa ${ }^{1,2}$, A. Vignaud ${ }^{3}$, L. Cabrol ${ }^{1,2}$, and P. G. Carlier ${ }^{1,2}$
${ }^{1}$ Institut de Myologie, Laboratoire de RMN, Paris, France, ${ }^{2}$ CEA, I2BM, Paris, France, ${ }^{3}$ Siemens Healthcare, Saint Denis, France

Introduction: A fast 3D T_{2} mapping technique based on two partially Spoiled Steady State Free Precession (pSSFP) gradient echo acquisitions has recently been proposed by Bieri et al. [1]. Analytical expression for the estimated T_{2} as a function of the experimental parameters (TR, the RF flip angle α and the RF spoiling increments ϕ) assumed that the condition $\eta \ll T_{1} / T_{2}$ was respected, where $\eta=0.5(1+\cos \alpha) /(1-\cos \alpha)$ [1]. For the most of human soft tissues, this condition could only be attained using RF flip angles between 70° and 100°. Such flip angles could lead to SAR concerns for fast 3D mapping in particularly at high fields ($\geq 3 \mathrm{~T}$). In this work (i) we examined numerical dependence of the estimated values of $T_{2}\left(T_{2}{ }^{\text {estim }}\right.$) upon the parameter $T_{2} / T_{1} / \eta$; (ii) we described an empirical analytical expression relating $\mathrm{T}_{2}{ }^{\text {estim }}$ and the "true" T_{2}; (iii) we verified experimentally the validity for this expression. By extension we demonstrated that using two α and two ϕ simultaneous T_{1} and T_{2} extraction was possible even when the $\eta \ll T_{1} / T_{2}$ condition was not fulfilled. These findings allowed us to introduce a new fast 3D simultaneous T_{1} and T_{2} mappings method with low SAR deposition.
Theory: In [2] an analytical description of SSFP with RF spoiling is given. For small ϕ, the solution to the steady-state signal as function of $\alpha, \phi, T R, T_{1}$ and T_{2} can be written as:

$$
\begin{equation*}
S=A \frac{\Gamma \delta}{\xi} \frac{\sqrt{\lambda^{2}+\phi^{2}}}{\kappa \lambda^{2}+\phi^{2}} \tag{1}
\end{equation*}
$$

A is a scale factor, which depends on the receiver sensitivity and the proton density $\left(\mathrm{M}_{0}\right) . \xi$ only depends on the flip angle α and must be determined numerically. Typical values are given in [2]. $\Gamma=\sin \alpha /(1-\cos \alpha), \delta=T R / T_{1}, \lambda=T R /\left(\xi \cdot T_{2}\right)(1+\kappa)$ and $\kappa=\left(1+2 \eta T_{2} / T_{1}\right)^{1 / 2}$. If $\eta \ll T_{1} / T_{2}$, $\kappa \rightarrow 1$ and Equation (1) can be reduced to an expression independent of T_{1}. In this case, T_{2} estimated from two pSSFP acquisitions with different linear increments ϕ_{1} and ϕ_{2} is [1]:

$$
\begin{equation*}
T_{2}^{e s t i m}=\frac{2 T R}{\xi} \sqrt{\frac{S_{1}^{2}-S_{2}^{2}}{S_{2}^{2} \phi_{2}^{2}-S_{1}^{2} \phi_{1}^{2}}} \tag{2}
\end{equation*}
$$

Methods: (Simulation) Numerical simulation was performed using Equations (1) and (2) to calculate the error in the T_{2} estimation for different values of T_{1}, T_{2} and α. Linearly spaced values for T_{1}, T_{2} and α were generated in the range $\left[\mathrm{T}_{1}: 100 \mathrm{~ms}\right.$ to 10 s$],\left[\mathrm{T}_{2}: 20 \mathrm{~ms}\right.$ to $\mathrm{T}_{2}=\mathrm{T}_{1}$] and $\left[\alpha: 10\right.$ to $\left.90^{\circ}\right] . \phi_{1}$ and ϕ_{2} were set to 1 and 10 degrees. TR was set to 10 ms . S_{1} and S_{2} were calculated for each T_{1}, T_{2} and α values using Equation (1). $T_{2}^{\text {estim }}$ were calculated using Equation (2). The last equation could be fitted with an empirical logistic curve: $y=\left(x / x_{0}\right) /(1+$ $\mathrm{x} / \mathrm{x}_{0}$) where $\mathrm{y}=\mathrm{T}_{2}^{\text {estim }} / \mathrm{T}_{2}, \mathrm{x}=\mathrm{T}_{1} / \mathrm{T}_{2} / \eta$ and $\mathrm{x}_{0}=\sqrt{2}$. With such an expression $\mathrm{T}_{2}{ }^{\text {estim }}$ and the "true" T_{2} can be related by a simple analytical expression: $T_{2}=T_{2}{ }^{\text {estim }}(1+\beta \eta)$, where $\beta=\sqrt{ } 2\left(T_{2} / T_{1}\right)$. An important consequence of this simplification is that T_{2} and T_{1} can be accuracy obtained from four pSSFP acquisitions, using two different linear increments ϕ_{i} and two different flip angles α_{i} and completing a simple system of two equations with two unknowns.
(Experimental) Experimental data were acquired on a 3.0 T whole-body scanner (Tim Trio, Siemens Healthcare, Erlangen, Germany) using a Circularly Polarized coil (CP Extremity). 3D pSSFP experiments were carried out using a doped agarose phantom with $1.2 \mathrm{~mm}^{3}$ isotropic voxel volume and $300 \mu \mathrm{~s}$ hard pulse excitations, with. $\phi_{1,,} \phi_{2}$, and TR set like in the numerical simulation. Twelve different flip angles were used, ranging from 30° to $90^{\circ} . \mathrm{T}_{2}{ }^{\text {estim }}$ was calculated for each flip angle value using Equation (2). Phantom T_{1} and T_{2} were independently measured using an inversion recovery sequence (11 TI values ranging from 110 to 8000 ms , $\mathrm{TR} \sim 8 \mathrm{~s}$) and a 2 D multi-spin echo sequence (31 TE values, ranging from 25.8 to $412.9 \mathrm{~ms}, \mathrm{TR}=8 \mathrm{~s}$), respectively.
Results: (Simulation) Figure 1 (up) shows the result for the numerical simulation (black circles). Simple empirical fit was represented by the red line. Figure 1 (bottom) shows the residual plot for the fitting. The logistic curve fits accurately (less than 5% error) the numerical data for the range ($\left.\mathrm{T}_{1} / \mathrm{T}_{2}\right) / \eta>2$.
(Experimental) Using the phantom T_{1} and T_{2} values independently obtained ($\mathrm{T}_{1}=1560 \mathrm{~ms}, \mathrm{~T}_{2}=130$ ms), experimental data (blue squares) are superposed to the numerical data and the fitted curve. On Figure 2 an example of this simultaneous T_{1} and T_{2} mapping can be seen. T_{1} and T_{2} were derived from four
figure 1: (Up) Numerical simulation data (black dots), fitted curve (red line) and experimental data (blue squares). (Bottom) residual plot for the fitting model.

figure 2 (left) Axial view of the 3D T_{2} maps and corresponding histograms obtained such a pSSFP experiments with $\alpha=45^{\circ}$ and $\alpha=90^{\circ}$. (right) derived T_{2} and T_{1} maps and corresponding histograms, combining experimental data from pSSFP acquisitions with $\alpha=45^{\circ}$ and $\alpha=90^{\circ}$ as described in Discussion.
pSSFP experiments, using $\phi_{1}=1^{\circ}, \phi_{2}=10^{\circ}, \alpha_{1}=45^{\circ}$ and $\alpha_{2}=$ 90°. Results for T_{1} and T_{2} obtained from this method agree very well with independent measurements.
Discussion: This new method allowed us to estimate T_{2} alone with 2 pSSFP acquisitions or T_{1} and T_{2} with 4 pSSFP acquisitions and gave accurate results on phantoms for $\left(\mathrm{T}_{1} / \mathrm{T}_{2}\right) / \eta>2$. It looks promising in terms of flexibility with regard to $\mathrm{T}_{1} / \mathrm{T}_{2}$ ratios of biological tissues and for use at lower flip angles compatible with high magnetic field SAR limitations. In contrast to other 3D SSFP based T_{1} and T_{2} mapping techniques, such as segmented IR-TrueFISP [3] or DESPOT1/ DESPOT2 [4], $\mathrm{T}_{1}-\mathrm{T}_{2}$-pSSFP method does not suffer of banding artifacts due to off-resonance. Future work will aim at the demonstration of the analytical equation used and the optimization of α_{i} and ϕ_{i} increments for 3D T_{1} and T_{2} mapping of the skeletal muscle. References: [1] Bieri et al, ISMRM 2634 (2009), [2] Ganter C., MRM 2006;55:98-107, [3], Schmitt et al, MRM 2004; 51:661-667, [4] Deoni et al, MRM 2003;49:515-526.

