Simultaneous T1 and T2 mappings using partially Spoiled Steady State Free Precession (pSSFP)

P. Loureiro de Sousa^{1,2}, A. Vignaud³, L. Cabrol^{1,2}, and P. G. Carlier^{1,2}

¹Institut de Myologie, Laboratoire de RMN, Paris, France, ²CEA, I2BM, Paris, France, ³Siemens Healthcare, Saint Denis, France

Introduction: A fast 3D T₂ mapping technique based on two partially Spoiled Steady State Free Precession (pSSFP) gradient echo acquisitions has recently been proposed by Bieri et al. [1]. Analytical expression for the estimated T_2 as a function of the experimental parameters (TR, the RF flip angle α and the RF spoiling increments ϕ) assumed that the condition $\eta \ll T_1/T_2$ was respected, where $\eta = 0.5(1+\cos\alpha)/(1-\cos\alpha)$ [1]. For the most of human soft tissues, this condition could only be attained using RF flip angles between 70° and 100°. Such flip angles could lead to SAR concerns for fast 3D mapping in particularly at high fields (\geq 3T). In this work (i) we examined numerical dependence of the estimated values of T_2 (T_2^{estim}) upon the parameter $T_2/T_1/\eta$; (ii) we described an empirical analytical expression relating T_2^{estim} and the "true" T_2 ; (iii) we verified experimentally the validity for this expression. By extension we demonstrated that using two α and two ϕ simultaneous T_1 and T_2 extraction was possible even when the $\eta \ll T_1/T_2$ condition was not fulfilled. These findings allowed us to introduce a new fast 3D simultaneous T_1 and T_2 mappings method with low SAR deposition.

Theory: In [2] an analytical description of SSFP with RF spoiling is given. For small ϕ , the solution to the steady-state signal as function of α , ϕ , TR, T₁ and T₂ can be written as:

$$S = A \frac{\Gamma \delta}{\xi} \frac{\sqrt{\lambda^2 + \phi^2}}{\kappa \lambda^2 + \phi^2} \tag{1}$$

A is a scale factor, which depends on the receiver sensitivity and the proton density (M_0). ξ only depends on the flip angle α and must be determined numerically. Typical values are given in [2]. $\Gamma = \sin\alpha/(1-\cos\alpha)$, $\delta = TR/(\xi, T_2)(1+\kappa)$ and $\kappa = (1+2\eta T_2/T_1)^{1/2}$. If $\eta \ll T_1/T_2$, $\kappa \rightarrow 1$ and Equation (1) can be reduced to an

expression independent of T_1 . In this case, T_2 estimated from two pSSFP acquisitions with different linear increments ϕ_1 and ϕ_2 is [1]:

$$\Gamma_{2}^{estim} = \frac{2TR}{\xi} \sqrt{\frac{S_{1}^{2} - S_{2}^{2}}{S_{2}^{2} \phi_{2}^{2} - S_{1}^{2} \phi_{1}^{2}}}$$
(2)

Methods: (Simulation) Numerical simulation was performed using Equations (1) and (2) to calculate the error in the T₂ estimation for different values of T₁, T₂ and α . Linearly spaced values for T₁, T₂ and α were generated in the range $[T_1: 100 \text{ms to } 10 \text{s}]$, $[T_2: 20 \text{ms to } T_2=T_1]$ and $[\alpha: 10 \text{ to } 90^\circ]$. ϕ_1 and ϕ_2 were set to 1 and 10 degrees. TR was set to 10ms. S_1 and S_2 were calculated for each T_1 , T_2 and α values using Equation (1). T_2^{estim} were calculated using Equation (2). The last equation could be fitted with an empirical logistic curve: $y = (x/x_0)/(1 + x_0)/(1 + x_0)/(1$ x/x_0) where $y = T_2^{estim}/T_2$, $x = T_1/T_2/\eta$ and $x_0 = \sqrt{2}$. With such an expression T_2^{estim} and the "true" T_2 can be related by a simple analytical expression: $T_2 = T_2^{estim} (1 + \beta \eta)$, where $\beta = \sqrt{2} (T_2/T_1)$. An important consequence of this simplification is that T_2 and T_1 can be accuracy obtained from four pSSFP acquisitions, using two different linear increments ϕ_i and two different flip angles α_i and completing a simple system of two equations with two unknowns.

(Experimental) Experimental data were acquired on a 3.0 T whole-body scanner (Tim Trio, Siemens Healthcare, Erlangen, Germany) using a Circularly Polarized coil (CP Extremity). 3D pSSFP experiments were carried out using a doped agarose phantom with 1.2mm³ isotropic voxel volume and 300µs hard pulse excitations, with $\phi_{1,1}$, ϕ_{2} , and TR set like in the numerical simulation. Twelve different flip angles were used. ranging from 30° to 90°. T_2^{estim} was calculated for each flip angle value using Equation (2). Phantom T_1 and T_2 were independently measured using an inversion recovery sequence (11 TI values ranging from 110 to 8000 ms, TR ~ 8 s) and a 2D multi-spin echo sequence (31 TE values, ranging from 25.8 to 412.9 ms, TR = 8 s), respectively

Results: (Simulation) Figure 1 (up) shows the result for the numerical simulation (black circles). Simple empirical fit was represented by the red line. Figure 1 (bottom) shows the residual plot for the fitting. The logistic curve fits accurately (less than 5% error) the numerical data for the range $(T_1/T_2)/\eta > 2$.

(Experimental) Using the phantom T_1 and T_2 values independently obtained ($T_1 = 1560$ ms, $T_2 = 130$ ms), experimental data (blue squares) are superposed to the numerical data and the fitted curve. On Figure 2 an example of this simultaneous T_1 and T_2 mapping can be seen. T_1 and T_2 were derived from four

pSSFP experiments, using $\phi_1 = 1^\circ$, $\phi_2 = 10^\circ$, $\alpha_1 = 45^\circ$ and $\alpha_2 =$ 90°. Results for T₁ and T₂ obtained from this method agree very well with independent measurements.

Discussion: This new method allowed us to estimate T₂ alone with 2 pSSFP acquisitions or T1 and T2 with 4 pSSFP acquisitions and gave accurate results on phantoms for $(T_1/T_2)/\eta > 2$. It looks promising in terms of flexibility with regard to T₁/T₂ ratios of biological tissues and for use at lower flip angles compatible with high magnetic field SAR limitations. In contrast to other 3D SSFP based T1 and T2 mapping techniques, such as segmented IR-TrueFISP [3] or DESPOT1/ DESPOT2 [4], T1-T2-pSSFP method does not suffer of banding artifacts due to off-resonance. Future work will aim at the demonstration of the analytical equation used and the optimization of α_i and ϕ_i increments for 3D T₁ and T₂ mapping of the skeletal muscle. References: [1] Bieri et al, ISMRM 2634 (2009), [2] Ganter C., MRM 2006;55:98-107, [3], Schmitt et al, MRM 2004; 51:661-667, [4] Deoni et al, MRM 2003;49:515-526.

figure 2 (left) Axial view of the 3D T_2 maps and corresponding histograms obtained such a pSSFP experiments with $\alpha = 45^{\circ}$ and $\alpha = 90^{\circ}$. (right) derived T_2 and T_1 maps and corresponding histograms, combining experimental data from pSSFP acquisitions with α =45° and α =90° as described in Discussion.