T1 corrected Fast T2 Mapping Using Partially Spoiled SSFP

O. Bieri¹, K. Scheffler¹, and C. Ganter²

¹Radiological Physics, University of Basel Hospital, Basel, Switzerland, ²Department of Diagnostic Radiology, Technical University

Munich, Munich, Germany

Introduction. The width of transition of steady-state free precession (SSFP) to RF-spoiled SSFP is inversely proportional to the transverse relaxation time T_2 (1), which has been used to derive quantitative T_2 maps from two partially spoiled SSFP-FID signals (T2-pSSFP) (2). Signal analysis based on an approximate solution being independent on the longitudinal relaxation time T_1 , but with sensitivity to the partial spoiling increment (ϕ), the flip angle (α), the repetition time (TR) and to T_2 . This approximation is valid for tissues with

$$T_1/T_2 >> 0.5(1 + \cos\alpha)/(1 - \cos\alpha)$$
 [1]

In the limit of large flip angles ($\alpha \sim 70^{\circ}$) and for tissues with $T_1/T_2 \gg 1$, estimation of T_2 was shown to be accurate whereas for liquids or for smaller flip angles, T_2 is underestimated. In this work, we abandon the constraint formulated in Eq. [1] and solve the more complex signal equation as given by C. Ganter in Eq. [35] (1),

7

$$m_{xy}(\phi) \propto \frac{[\sigma^2 \delta^2 + \xi^2 \phi^2]^{1/2}}{\sigma^2 \delta^2 + \xi^2 \phi^2 - \eta \sigma \delta^2}$$
[2]

that depends now on T₁, as well. We will show that an analytic expression to Eq. [2] can be found that can be used to assess T₂ using T2-pSSFP in combination with T₁ measurements.

Theory. Suppose we know $\lambda := T_2/T_1$. Eq. [2] leads to a cubic equation of form $z^3 + a_2z^2 + a_1z + a_0 = 0$, where $\sqrt{z} := TR/T_2$. Thus

 $a_0 = (1 - S_{12})^{-1} (b_1 c_2^2 - S_{12} b_2 c_1^2)$

$$z = s_{+} + s_{-} - a_{2}/3, \text{ where } s_{\pm} = [r + (q^{3} \pm r^{2})^{1/2}]^{1/3}$$

and $q := a_{1}/3 + a_{2}^{2}/9, r := (a_{1}a_{2} - 3a_{2})/6 - a_{2}^{3}/27$ [3]

with

$$a_{1} = (1 - S_{12})^{-1} (2b_{1}c_{2} + c_{2}^{2} - S_{12}[2b_{2}c_{1} + c_{1}^{2}])$$

$$a_{2} = (1 - S_{12})^{-1} (b_{1} + 2c_{2} - S_{12}[b_{2} + 2c_{1}])$$
[4]

and definitions

$$b_i \coloneqq \xi^2 \phi_i^2 / [1+\nu]^2, \quad c_i \coloneqq b_i / \nu, \quad \nu \coloneqq \sqrt{1+\eta\lambda}$$

$$\eta \coloneqq (1+\cos\alpha) / (1-\cos\alpha)$$
[5]

The quantity ξ depends on α and is determined via a continued fraction expansion (see Eq. [34] in Ref. (1)) and $S_{12} = S_1^2(\phi_1)$ / $S_2^2(\phi_2)$ refers to the measured quadratic signal ratio with partial spoiling increments ϕ_1 and ϕ_2 , respectively.

Materials & Methods. All simulations, data analysis and visualizations were done using Matlab 2007b. Human brain scans were performed in 3D at 1.5T with 1.33mm isotropic resolution (192x192x144 matrix) for α ranging from 20° to 70°. The *TR* was set to 5.4ms and a hard RF pulse of 600µs duration was used. Partial spoiling increments were 1° and 9° and T₁ information was acquired using DESPOT1 (*TR* = 15ms with $\alpha_{1,2} = 4^\circ, 23^\circ$) with essentially identical matrix size and FOV.

α	T2/T1 ≤ 1/2			T2/T1 ≤ 1/5			T2/T1 ≤ 1/10		
(TR ~ 5)	φ1	φ2	δ(**)	φ1	φ2	δ(**)	φ 1	φ2	δ(**)
20°(*)				0	7	2	0	67	1
30°	2	10	1.5	1	10	1	1	910	3/4
40°	1	710	5/4	1	710	3/4	1	610	1/2
50°	1	610	1	1	610	1/2	1	510	1/3
60°	1	510	3/4	1	510	1/3	1	510	1/5
70°	1	510	1/2	1	510	1/5	1	510	1/10
90°	1	510	1/3	1	510	1/10	1	510	1/20

Table 1: Error in the estimation of T2 according to Eqs. [3-5] is less than 10% within the stated range of ϕ values and is given as a function of α and T_2/T_1 . The sensitivity on T_1 of the estimated T_2 is given by $\Delta T_2/T_2 = \delta \cdot \Delta T_1/T_1$.

Fig. 1: T2 maps from 3D T2-pSSFP with and without T_1 correction as a function of α with ROIs in white (1,2) and gray (3,4) matter.

Fig. 2: Deviation from T2 as a function of flip angle for ROIs as indicated in Fig. 1 (red curve: derived T2 without T1 correction, i.e. according to ref (2); black line: T1 corrected derived T2 value using Eqs. [3-5]). As expected (see Table 1), derived T2 values from pSSFP can be corrected using T1 information approximately down to 30°.

Results & Discussion. Using the full analytic signal description of partially spoiled SSFP, the accuracy in the estimation of T_2 from Eqs. [3-5] can be analyzed as a function of λ and α (Table 1). Deviation in T_2 is typically less than 10% for tissues ($T_2/T_1 \sim 0.1$) down to $\alpha \sim 30^\circ$ provided T_1 is known. As expected, sensitivity on T_1 is low for large flip angles ($\alpha > 70^\circ$), but T_1 information becomes increasingly important with decreasing α , as indicated by the parameter δ in Table 1. For evaluation, in-vivo 3D T2-pSSFP brain scans were performed on a healthy volunteer and results are shown in Fig. 1. As expected, sensitivity of T_2 on α is reduced upon T_1 correction, but breaks down for low flip angles ($\alpha \sim 30^\circ$). Observed residual T_2 modulations between $\alpha = 30^\circ$ –70° are most likely either due to B₁ field inhomogeneities which become increasingly important with lower α , or due to inconsistencies between derived T_1 values from DESPOT1 and true T_1 values (an underestimation in T_1 results in an underestimation of T_2) which become less and less important with increasing flip angles.

Conclusion. Provided that T_1 is known, the constraint on high flip angles for the assessment of T_2 values using T2-pSSFP can be abandoned and accurate T_2 values can be derived with flip angles down to 30°. This offers the possibility for acquisitions with higher SNR, but requires guessed or additional measured T_1 values.

References. (1) Ganter, C. MRM 2006; 55:98-107; (2) Bieri O, Ganter C, Scheffler, K. Proc. ISMRM Hawaii (2009), p. 2634