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Figure 1: Voxel-wise image phase and magnitude reconstruction errors using an under-
sampling factor of R=8 (12.5% of k-space). Top left: Image phase RMSE errors from
assuming constant phase (units of radians). Top right: Image phase errors after switching
to a linear phase model. Bottom left: Image reconstruction error from assuming constant
phase (in percentage). Bottom right: Image reconstruction error after switching to a linear
phase model. Error is computed as RMSE or CV(RMSE)% over time. 
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Introduction: A promising method for reconstructing a high quality sequence of images from rapidly acquired, under-sampled DCE acquisitions is the 
model-based reconstruction method—an algorithm that constrains the magnitude of the reconstructed time series to be consistent with a 
pharmacokinetic model. Here we extend the model-based reconstruction to include a physically based linear model that can account for phase changes 
due to field distortions from a gadolinium injection [1]. In some 
cases, neglecting these phase effects will lead to poor 
reconstructions at undersampling factors of R=8 and above. To 
estimate phase offsets from undersampled data, we investigate a 
physically based linear model that relates phase difference to 
magnitude difference. We use this phase model to extend the 
model-based reconstruction method to handle dynamic image 
phase.   
 
Materials and Methods: The model-based reconstruction uses a 
compartmental model within each voxel of interest [2]:  
 

where g is the image’s complex signal intensity (SI), x is short for 
spatial coordinate (x,y,z), |S0(x)| is the pre-contrast intensity, β(x) a 
vector containing parameter maps of Ktrans, kep, CA delay t0, and dy-
namic image phase parameters, and φ(x,t;β) the dynamic image 
phase model: 
 
 
where c(x) is the linear scale parameter, φ(x,tb) the measured 
baseline (post-contrast) phase taken at time tb, and u is given by 
 
 
The model-based approach requires estimating 3 or 4 unknowns 
per voxel, whereas a fully sampled dataset contains around 50 
datapoints over time per voxel. This vast asymmetry in knowns to 
unknowns can be exploited by model-based methods, provided that 
image phase dynamics are estimated with reasonably accuracy. If 
they are inaccurate, the Fourier transform of the trial reconstruc-
tions will not agree with the measured k-space data at each 
iteration, eventually offsetting the benefit of a high known to 
unknown ratio. Both a constant- and linear-phase model were 
applied to reconstruct two 4D breast DCE full k-space acquisitions, 
retrospectively undersampled at R-factors of 1, 4, and 8. 
Reconstruction errors were measured by comparing reconstructed 
magnitudes with the gold standard, an inverse Fourier transform of 
R=1 measured data. The method of Murase [3] was used for esti-
mating kinetic parameters from reconstructions and the gold 
standard. 
 
Results: Figure 1 shows that image reconstruction errors correlate 
spatially with dynamic image phase estimation errors. We have 
observed changes in image phase on the order of 0.5 radians for 
voxels of interest. When reconstructing with the constant phase 
model, these same voxels had substantial reconstruction errors. 
Figure 2 shows that the constant phase assumption resulted in a 
steep, erratic growth rate of error as R increased, whereas the 
linear phase model’s errors remained relatively flat. Results from 
two other models are included for reference: a quadratic polynomial 
model (an extension to the linear-phase model), and a full-phase 
model (fixed to known phase). The constant- and full-phase models 
appear to do so well at R=1 because they have the fewest 
unknowns and phase is fixed to R=1 data. 
 
Discussion: Although gadolinium’s effects on the magnetic field are linear with concentration, the phase shifts are not spatially uniform due to a shift-
variant convolution with a dipole field whose kernel varies spatially depending on the local geometry’s angle made with B0 [1]. The spatially varying field 
motivated the decision of using one scale parameter per voxel, as opposed to using one global scale parameter. Furthermore, the nonuniformities of the 
field evolve over time as the CA concentration changes. To account for this phenomenon, alternative modifications are possible; one includes a higher 
order polynomial, the results of which are shown in Figure 2 for the quadratic case. Thus far we have found in practice the linear model to provide the 
most expressive power; this is because it substantially reduces error in cases where the constant assumption breaks down and because it requires the 
estimation of only one additional unknown per voxel. 
 
Conclusion: In the context of model-based reconstructions, while working at high undersampling factors, moderate dynamic phase shifts contribute to 
an appreciable portion of the error and thus should not be neglected. We have shown that a linear-phase model can reduce this source of error.  
 
References:  [1] Rochefort et al, Med.Phys. 35(12) 2008.  [2] Felsted et al, SPIE 72622S 2009.  [3] Murase, MRM 51:858-862 2004.  [4] Tofts et al, 
JMRI 1999.  

Figure 2: Comparison of reconstruction and parameter errors within the tumor for various R-
factors from different phase models, the constant- and linear-phase models, as well as a
quadratic-phase model and a gold standard full-phase model for comparison. The left plot
shows CV(RMSE)% of reconstructions. The top- and bottom-right plots show RMSE for Ktrans,
kep in units of mmol/min and min-1, respectively. Variable density undersampling was used. 

ϕ(x, t;β) = ϕ(x, tb ) + c(x) ⋅ u x, t;β( )− u x, tb;β( )( )
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