
Fig. 2 GROWL results using 32 radial views. (a)-(b): Images (matrix size 256 x 256) 
without (a) and with (b) the proposed regularization. Noise level = 5%. (c) RMSE vs. 
regularization factor at various noise levels. λopt is defined in Eqn. (5). 

Fig. 1 RMSE for GRAPPA images with different Tikhonov regularization factors (a) 
and additive noise level in the ACS region (b). λopt and σopt are defined in Eqn. (5) and 
(6), respectively. Image matrix 256 x 256, reduction factor R = 4, ACS line no. = 32, 
noise level = 5%.  
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Introduction 

Generalized auto-calibrating partially parallel acquisition (GRAPPA) [1] has been widely used in many clinical applications. GRAPPA operator for 
wider radial bands (GROWL) [2] is a fast self-calibrated parallel imaging technique for radial datasets using the GRAPPA formalism. The performance of 
these techniques can suffer, when the size of auto-calibration signal (ACS) region becomes small. Several previous works have discussed empirical solutions 
to this problem [3-4]. In this work, an optimal Tikhonov regularization factor is proposed based on an analysis of the condition number for the GRAPPA 
calibration equation. The technique is applied to both GRAPPA and GROWL, and results show that minimal reconstruction errors are consistently achieved 
with the proposed method. 

Theory 
During the GRAPPA calibration process, the data weighting vector w is determined by solving 

the over-determined linear equation Eqn. (1). Here TACS and SACS are vectors of target and source data 
points from multiple k-space locations and coil channels, collected in the ACS region. The ideal 
weighting vector, however, should solve Eqn. (2). Here both target and source data points are collected 
in the entire k-space. One key observation is that Eqn. (1) has a much higher condition number than 
Eqn. (2). The condition number can be computed by applying singular value decomposition (SVD) to 
the source data matrix S and calculating the ratio between the maximal and minimal singular values 
(smax and smin). The smax is determined by the overall signal profiles and therefore is independent of the 
size of ACS region NACS. For a random matrix, smin can be determined from Eqn. (3) [5]. Here σ is the 
noise standard deviation for each channel. Therefore a smaller ACS region results in a lower smin value 
and a higher condition number.  

There are two approaches to artificially increase smin: One approach is to use the Tikhonov 
regularization [6], which solves Eqn. (1) by minimizing Eqn. (4). Here λ is known as the Tikhonov factor. Our hypothesis is that optimal Tikhonov factor 
should result in a condition number similar to that of the whole k-space calibration equation (Eqn. (2)). If the entire k-space contains NE data points, the 
optimal Tikhonov factor is then Eqn. (5). The other approach is to add random noise to the ACS data to increase σ (Eqn. (3)). Based on the same hypothesis 
above, the optimal standard deviation of the added noise should be Eqn. (6). 
Methods 

The proposed regularization scheme was applied to both GRAPPA 
and GROWL techniques. A noise-free T1-weighted Cartesian brain MR 
dataset was downloaded from a simulated brain database 
(http://www.bic.mni.mcgill.ca/brainweb/). The complex sensitivity 
profile of a head coil array with eight coil elements equally spaced 
around a cylinder was computed using an analytic Biot-Savart 
integration. The k-space data for each individual channel was then 
derived using the Fourier Transform (FT) for GRAPPA (Cartesian 
datasets) and inverse gridding for GROWL (radial datasets). Gaussian 
distributed random noise was then added to both real and imaginary 
components of each channel of k-space data, resulting in a noise 
standard deviation in the range of 0.1% - 5.0% of signal intensity of the 
white matter (the dominant tissue) in the final images reconstructed 
using the square-root-of-sum-of-square (SSoS) channel combination. 
Different Tikhonov regularization factors or additive ACS noise levels 
were applied and results were compared with the noise-free reference 
using root-mean-square-error (RMSE).  

Results and Discussions 
Figure 1 shows the RMSE plot for a GRAPPA dataset (image 

matrix 256 x 256, reduction factor R = 4, ACS line no. = 32, noise level 
5%). The minimal RMSE was achieved either using the proposed 
Tikhonov regularization factor or the proposed additive ACS noise level. 
Figure 2a-b shows GROWL images with 32 radial views (noise level 
5%). Without regularization (Fig. 2a), residual error is significant due to 
the small ACS region (20 x 20). With the proposed regularization 
strategy (Fig. 2b), the RMSE is reduced from 19% to 6.3%. Figure 2c 
demonstrates that the proposed regularization factors are optimal at all 
noise levels. 

The proposed automatic method achieves an optimal balance 
between noise and artifact levels by increasing the minimal singular 
value of the GRAPAP calibration equation. An alternative approach to improve the conditioning of the GRAPPA calibration equation is to reduce the 
maximal singular value, such as high-passed GRAPPA [7]. 
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