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Introduction 
A well-known reconstruction technique developed by Gerchberg, based on “error energy” reduction [1], is extended in this study to sparsely sampled 
dynamic cardiac magnetic resonance imaging (CMRI).  A-priori knowledge of static and dynamic regions in the FOV is used to sample a subset of 
phase-encoding views on a regular Cartesian grid, allowing a reduction in overall imaging time.  Similar to the direct-inversion Noquist method [2], 
the iterative reconstruction does not use either data-substitution or temporal interpolation.  Instead, the inherent temporally band-limited properties of 
the spatially bounded object, the static FOV, are used to recover additional resolution from information embedded in sparse k-t samples. The 
algorithm iteratively “corrects” the data applying the band-limited constraint in the image domain and the acquired data in the Fourier domain.  The 
proposed method is compared to a full-grid reconstruction (“truth”), the original Noquist reconstruction and to a method that uses temporal 
interpolation (UNFOLD). Convergence properties and noise amplification due to undersampled data are investigated. 
Methods 
The cardiac phantom introduced in [2] was used in simulation 
(Fig 3). Typically observed cardiac dynamics, such as 
concentric contraction (1) from systole (3b) to diastole (3c), 
vertical (2), horizontal (3) translational motion and sinusoidal 
(4) and transient (5) intensity events are simulated in k-space.  
Temporal changes were sampled uniformly at 16 phases 
during the cardiac cycle with a nominal full-grid spatial 
resolution of 256 x 256. Noisy datasets had normally 
distributed white noise with 10 dB SNR added to k-space 
data. Figure 1. shows acquisition patterns as per the Stairwell 
and UNFOLD algorithms (49.6% and 50 % data reduction 
respectively).  Iterative reconstruction (Figure 2) begins with 
first producing estimated images from the sparse data using 
temporal nearest-neighbor substitution to generate a full dataset.  This result is transformed to the Fourier domain and corrected by replacing all 
phase-encoding views that were sampled with the corresponding original data.  These k-space data are returned to image domain via inverse Fourier 
transform.  The error in the known static region due to residual dynamic content is minimized by temporal low-pass filtering in this region.  This 
process continues until convergence, (no further change in error energy) is achieved. 
Results and Discussion 
The convergence patterns shown in Figure 3f. suggest ideal reconstruction, similar to direct inversion [2] for the Stairwell algorithm as seen (Fig 
3a,b), while the UNFOLD reconstruction (Fig 3c) shows residual artifact due to incomplete estimation of the dynamic spectrum. The proposed 
iterative process however, yields improvements relative to the original UNFOLD temporal interpolation method (Fig 3g).  Diastolic (Fig 3d) and 
systolic (Fig 3h) iterative reconstructions of a cardiac-gated CMRI acquisition (normal volunteer) show anticipated noise amplification in dynamic 
regions relative to full-matrix (Fig 3e). Table 1. quantifies this SNR reduction in a sample dynamic region in 10 dB phantom reconstructions. 
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Table 1. 
Reconstruction SNR 

Iterative 2.39 

Noquist 2.35 
Ideal 3.56 

 

Conclusions 
The iterative error energy reduction method can be successfully implemented for reconstructing CMRI data with results equivalent to direct-inversion 
with the advantage of significantly reduced computational costs.  The convergence properties are closely related to the sampling patterns. The 
proposed iterative process lends itself to flexibility in both selection of dynamic and static FOVs as well as k-space sampling schemes for further 
investigations.  In addition non-Cartesian sampling  such as radial and spiral sampling grids can be considered. 
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