Estimation of the Anisotropy of Electric Conductivity via B1 Mapping

U. Katscher¹, T. Voigt², and C. Findeklee¹

¹Philips Research Europe, Hamburg, Germany, ²Institute of Biomedical Engineering, University of Karlsruhe, Karlsruhe, Germany

Introduction: The electric conductivity can potentially be used as diagnostic information due to its ability to reflect the grade of tissue damage (see, e.g., [1]). In its general form, the conductivity is given by a rank-2 tensor, including anisotropic cases of conductivity. *In vivo*, anisotropic conductivities can be found in tissue with preferred cell direction, e.g., in muscles and nerves [2]. Measuring anisotropy of the tissue conductivity, characterizing the underlying cell structure, might increase diagnostic information. The recently presented "Electric Properties Tomography" (EPT) is able to determine tissue conductivity *in vivo* by post-processing B1 maps [3]. This study investigates the ability of EPT to estimate also the anisotropy of the conductivity.

<u>Theory</u>: Tissue conductivity σ and permittivity ε can be estimated via [3] (H/E the magnetic/electric field, ω the Larmor frequency)

$$\frac{\oint \nabla \times \mathbf{H}(\mathbf{r}) d\mathbf{r}}{\mu_0 \omega^2 \int_A \mathbf{H}(\mathbf{r}) d\mathbf{a}} = \frac{\oint \kappa(\mathbf{r}) \mathbf{E}(\mathbf{r}) d\mathbf{r}}{\oint \mathbf{E}(\mathbf{r}) d\mathbf{r}} \approx \frac{\kappa(\mathbf{r}) \oint \mathbf{E}(\mathbf{r}) d\mathbf{r}}{\oint \mathbf{A}} \approx \kappa(\mathbf{r}) = \kappa(\mathbf{r}) = \kappa(\mathbf{r}) - i\sigma(\mathbf{r}) / \omega .$$
(1)

The assumption of Eq. (1) is valid in regions, where the variation of κ (along the boundary ∂A of the integration area A) is significantly smaller than the variation of E, e.g., in areas with constant κ . The resulting κ is independent of the choice of A only in the case of isotropic κ . In the following, a maximally anisotropic κ^{aniso} is considered for demonstration purposes, i.e., $\kappa_{ij}^{aniso} = 0$ for all i,j=x,y,zexcept $\kappa_{xx}^{aniso} > 0$ (*x* assumed to be the left-right direction). For this case, two different integration areas are compared, a sagittal area A_{yz} and a coronal area A_{xz} . In the sagittal case, the vector $\mathbf{E}(\mathbf{r})d\mathbf{r}$ of Eq. (1) is in the sagittal plane, and multiplication with κ^{aniso}

(oriented perpendicular to the sagittal plane) yields a reconstruction result of zero. However, multiplication of $\mathbf{\kappa}^{aniso}$ with a vector $\mathbf{E}(\mathbf{r})d\mathbf{r}$ in the coronal plane yields a finite reconstruction result. The comparison of the two reconstructions reflects the underlying electric anisotropy. A single scan (with arbitrary slice orientation) is sufficient for this approach, i.e., the two reconstructions using A_{yz}

and A_{xz} can be applied to the same data set.

<u>Methods/Results</u>: Experiments were performed with a bottle of 500 ml saline ($\sigma = 1$ S/m, $\varepsilon_r = 80$) and 1 ml Magnevist (Bayer-Schering Pharma AG, Germany). The lower part of the bottle was completely filled with plastic drinking straws ($\emptyset = 3$ mm) to achieve electric anisotropy (Fig. 1). The phantom was placed in a transmit/receive head coil of a Philips Achieva 1.5T system (Philips Health Care, Best, The Netherlands). Sagittal B1 maps were acquired for three different phantom orientations using AFI [4] with TE/TR1/TR2=2.3/24/120ms, $\alpha = 60^{\circ}$, voxel size 2.5×2.5×3 mm³. The transmit phase was estimated by cutting the phase of the AFI images in half as suggested in [3]. Before, the image phase was corrected for

Fig. 1: Phantom with straws in lower part to achieve anisotropic conductivity

susceptibility effects via a separately acquired B0 map (dual echo sequence, $\Delta TE = 10$ ms). Conductivity reconstructions were performed for the different phantom orientations via Eq. (1) applying a sagittal and coronal integration area (Fig. 2). The quantitative analysis of the reconstruction results are given in the table.

Discussion/Conclusion: Electric anisotropy can be estimated by the impact of the EPT integration area on the reconstructed κ . Particularly, an integration area perpendicular to the major axis of κ yields minimal reconstructed κ . For anisotropic κ (with non-zero minor axes), the electric fields in Eq. (1) do not cancel completely, yielding a reconstructed κ weighted with the electric fields. This a substantial difference to isotropic κ , where the electric fields in Eq. (1) cancel completely, yielding absolute values of κ [3]. Contaminations from the typically isotropic permittivity are expected to be negligible due to $\varepsilon <<\sigma/\omega$ for human tissue at Larmor frequency. Future studies shall examine the potential diagnostic value of the electric anisotropy.

-								
Fig. 2	anterior/posterior orientation	feet/head orientation	straw orie	ntation	anterior -	feet -	left -	
	A REAL PROPERTY AND INCOME.				posterior	head	right	
ul ion	A CONTRACTOR OF	and the second se	sagittal in	nt. area	128%	99%	9.1%	
gitta grati rea	Contraction of the		coronal in	nt. area	8.3%	102%	77%	
sag nteg a	and the second second		Tab. 1: Reconstructed σ of straw compartment,					
.=			normalized to reconstructed σ of non-straw compartment.					
coronal integration area			References [1] Joines W et al., Med Phys 21 (1994) 547 [2] Gabriel C et al., Phys Med Biol 41 (1996) 2231 [3] Katscher U et al., IEEE TMI 28 (2009) 1365 [4] Yarnykh VL, Magn Reson Med 57 (2007) 192					