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Introduction:  The use of adiabatic passages is popular in magnetic resonance as a result of their robustness to the RF field inhomogeneities [1, 
2], thus a computationally efficient method of solving the Bloch equation for adiabatic pulses is important for design purposes. Here, the Bloch 
equation is scaled and subsequently averaged to find the magnetization behaviour in a straight forward way with negligible error for adiabatic 
passages. The novel framework presented here may be used to optimise the adiabatic modulation functions [1, 3]. 
Theoretical Results:  Radio frequency waveforms in MR systems are generated by piece-wise constant signals (Fig. 1), and pulse design is 
based on the Bloch equation. By neglecting the relaxation time constants during the excitation period, the Bloch equation in the classical rotating 
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For a constant input the above equation simplifies to '' 0=M& . For a piecewise constant RF excitation (Fig. 1), we may write 
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with 0 0α = , 0 0a = , and δ  the Dirac delta function. Our primary result is that the solution to the averaged scaled Bloch 

equation, avg avg avg'' ''  ''  =M Ω M& which is a linear time invariant system, may be written as 

avg 0'' exp( )  =M A M& where 0M is the initial condition of magnetization,  
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may be achieved by a single matrix exponential. Since for adiabatic passages | ( ) | ( ) |t a tα <<&  always holds the error of the averaged solution can 
be shown analytically to be negligible. 
Simulation Results:  Fig. 2 shows the simulation results for a typical Adiabatic Full Passage (AFP) chirp signal with amplitude of 117 μT and 
frequency sweep of 2×104 (1-800t) Hz  as in [1]. As shown in this figure magnetisation behaviour from the scaled Bloch equation is a slowly 
varying signal compared to the magnetisation in the classical rotating frame of reference. The error at the end of the pulse excitation period is less 
than three percent (Fig 2.d). 

 

                                                                                       

 

 

 

 
 

Conclusions: We have studied the behaviour of adiabatic passages through a first order averaging technique used the in nonlinear dynamical 
systems theory [4]. A surprising result is that in this novel representation of the Bloch equation, the solution is given by a single matrix 
exponential, and is therefore an extremely computationally efficient method. Simulation results demonstrate the negligible error that can be 
proven analytically. The method can be directly applied to aid the design of adiabatic passages in MRI.  
References:  [1] M. Garwood, and L. Delabarre, JMR, 2001, 153: 155-177. [2] S. Taheri, and R. Sood, JMRI, 2006, 24: 51-59. [3] S. Michaeli et 
al., JMR, 2006, 181: 135-147. [4] J. Sanders, et al., Averaging Methods in Nonlinear Dynamical Systems, Springer-Verlag, 2007.  

Fig. 1: A typical piece-wise constant 
excitation pattern. 
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Fig. 2: Simulation results of a 4 kHz 
isochromat for a chirp adiabatic 
passage with amplitude of 117 μT 
and frequency sweep of 2×104 (1-
800t) Hz in (a) the classical rotating 
frame of reference, (b) the scaled 
Bloch equation, (c) the averaged 
scaled Bloch equation, and (d) the 
error between the averaged solution 
and the exact solution.  

0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

Time (ms)

N
or

m
al

is
ed

 M
ag

ne
tis

at
io

n

 

 

Mx'

My'

Mz'

0 0.5 1 1.5 2 2.5
-0.5

0

0.5

1

Time (ms)

N
or

m
al

is
ed

 M
ag

ne
tis

at
io

n

 

 
Mx''

My''

Mz''

(a) 

(b) 

0 0.5 1 1.5 2 2.5
-0.5

0

0.5

1

Time (ms)

N
or

m
al

is
ed

 M
ag

ne
tis

at
io

n

 

 

Mx''avg

My''avg

Mz''avg

0 0.5 1 1.5 2 2.5
0

0.01

0.02

0.03

Time (ms)

%
 E

rr
or

 

 

|Mx''avg-Mx''|

|My''avg-My''|

|Mz''avg-Mz''|

(c) 

(d) 

Proc. Intl. Soc. Mag. Reson. Med. 18 (2010) 2855


