Image inhomogeneity correction in human brain at high field by B_1^+ and B_1^- maps

H. Watanabe¹, N. Takaya¹, and F. Mitsumori¹

¹Environmental Chemistry Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

Introduction

Images obtained at higher field are advantageous in high sensitivity and good spatial resolution, but suffer from inhomogeneous intensity due to B_1 inhomogeneity derived from RF interference effects and from RF coil design. Recently, it has been reported that transmission and reception fields represented as B_1^+ and B_1^- , respectively differ in spatial distribution even with RF coils for transmission and reception at higher filed (1, 2). A B_1^+ map is obtainable in short measurement time using a phase method (3). However, measurement of B_1^- has not been well pursued.

In this work, we hypothesize that a ratio map of B_1^- to B_1^+ has a similar spatial pattern in various brains from experimental findings and that B_1^- map is expressed as a function of B_1^+ map. We propose a correction method of image inhomogeneity using this relationship. First, we investigated relationship of B_1^+ and B_1^- in human brain through B_1^+ maps and images obtained with adiabatic pulses at 4.7 T. Second, we corrected images by using measured B_1^+ and calculated B_1^- . Third, fractions of water content (f_w) in several regions were measured on corrected M_0 maps using B_1^+ and B_1^- .

Methods

All experiments were performed using a 4.7 T whole-body NMR spectrometer (INOVA, Varian). A volume TEM coil with 300 mm diameter was used both for transmission and reception.

Relationship between B_1^+ and B_1^- in human brain: Two dimensional images were obtained using a multi-echo adiabatic spin echo sequence (MASE, 4) through the basal ganglia with varied TE's. The image intensity pixel by pixel was fitted using a formula, $SI = M_{\rm obs} \exp(-{\rm TE}/T_2)$ where $M_{\rm obs}$ is the product of $M_0(1-\exp(-{\rm TR}/T_1))$ and B_1^- . The term of $M_0(1-\exp(-{\rm TR}/T_1))$ in $M_{\rm obs}$ stayed within a range of $\pm 5\%$ in gray and white matters (GM, WM), when we assumed reported values of f_w (5, 6) were applicable as M_0 to our measurements. Thus, $M_{\rm obs}$ map is close to B_1^- map, and a ratio map of $M_{\rm obs}$ to B_1^+ is close to a ratio map of B_1^- to obtain a ratio of B_1^-/B_1^+ , we divided $M_{\rm obs}$ maps with B_1^+ maps in 24 subjects. B_1^+ maps were measured using a phase method (3).

 B_1^- calculation and Image correction: The ratio maps of $M_{\rm obs}$ to B_1^+ had similar profiles throughout 24 brains (Fig. 1), thus we hypothesized that ratio maps of B_1^- to B_1^+ have a similar spatial pattern, ρ and that a B_1^- map can be calculated by $B_1^- = \rho \times B_1^+$ in each brain. For obtaining that ratio map of ρ, we calculated a map of $< M_{\rm obs}/B_1^+>_{\rm ave}$ averaged among 24 subjects (Fig. 2a). This averaged map is slightly affected by deviations in $M_0(1-\exp(-TR/T_1))$ in GM and WM as mentioned above. Then, this map was fitted with a spatial polynomial function to achieve a more flattened spatial pattern. This fitted spatial pattern was regarded as a ratio map ρ (Fig. 2b). Each $M_{\rm obs}$ map calculated from MASE images was corrected using measured B_1^+ and B_1^- calculated using $\rho \times B_1^+$. Regional fractions of water obtained on M_0 maps after T_1 correction were compared to reported values (5, 6). Spin echo (SE) images (TE/TR = 30ms/500ms) were also corrected by both B_1 maps and relaxation times of T_1 and T_2 using a formula $SI = M_0B_1^-\sin^3\beta\exp(-TE/T_2)(1-\exp(-TR/T_1))$ where β was a flip angle in excitation pulse.

Results & Discussion

Central region of brain has higher intensity due to RF interference effects at high field in original $M_{\rm obs}$ from MASE (Fig. 3a) and an original image from SE (Fig. 3d). This higher intensity disappeared after a correction using measured B_1^+ and calculated B_1^- , and homogeneous images can be obtained (Figs. 3b, e). A M_0 map calculated from MASE images has a similar pattern as that from a SE image (Figs. 3c, f). Calculated values of f_w in GM and WM were in good agreement with reported values (Fig. 4). Corrected maps from SE have a little higher intensity in right peripheral regions (Figs. 3e, f). This may be caused by a cubic term of sin β when even a small amount of error in B_1^+ leads to overcorrection.

Conclusions

From experimental findings, B_1^- was related to B_1^+ in spatial distribution. B_1^- can be calculated using B_1^+ map and an experimentally defined ratio map, ρ . Image inhomogeneity in human brain was corrected even at high filed using this relationship.

References

1. Hoult D. I., *Concepts Magn. Reson.* 12, 173-183, 2000., **2.** Van de Morrtele P. F., Akgun C., Adriany G., Moeller S., Ritter J., Collins C. M., Smith M. B., Vaughan J. T., Uğurbil K., *Magn. Reson. Med.*, 54, 1503-1518, 2005., **3.** Park, J-Y, Garwood M., *Proc. Intl. Soc. Mag. Reson. Med.*, 16, 361, 2008., **4.** Mitsumori F., Watanabe H., Takaya N., Garwood M., *Magn. Reson. Med.*, 58, 1054-1060, 2007., **5.** Randall L. O., J. Biol. Chem., 124, 481-488, 1938., **6.** Gelman N., Ewing J. R., Gorell J. M., Spickler E. M., Solomon E. G., *Magn. Reson. Med.*, 45, 71-79, 2001.

Fig. 1. Profiles (a, b) in ratio maps of $M_{\rm obs}/B_1$ obtained from 5 volunteer's images.

Fig. 2. A map of $< M_{\rm obs}/B_1^+>_{\rm ave}$ (a) and a ratio map of B_1^-/B_1^+ (ρ) calculated by fitting of $< M_{\rm obs}/B_1^+>_{\rm ave}$ (b).

Fig. 3. Images from MASE (a, b, c) and from SE (d, e, f). a,d: original, b,e: B_1 corrected, c,f: M_0 corrected by B_1^+ , B_1^- , T_1 and T_2 .

Fig. 4. Individual and averaged values of fw on M_0 maps (n = 22) and reported values were plotted.