Intrinsic susceptibility contrast (R₂*) in the evaluation of tumour oxygenation at baseline and in response to neoadjuvant chemotherapy in breast cancer S. P. Li¹, N. J. Taylor², J. J. Stirling², M-L. W. Ah-See¹, M. J. Beresford¹, D. J. Collins³, J. A. d'Arcy³, A. Makris¹, and A. R. Padhani² Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, United Kingdom, ²Paul Strickland Scanner Centre, Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, United Kingdom, ³CR-UK Clinical MR Research Group, Royal Marsden Hospital, Sutton, Surrey, SM2 5PT, United Kingdom Introduction: The ability to image tumour hypoxia and evaluate oxygenation changes in response to treatment using R_2^* is a powerful yet underexplored tool in breast cancer in humans [1]. This study evaluates the relationship between baseline histology and dynamic contrast enhanced (DCE) and dynamic susceptibility enhanced (DSC) MRI parameters with R_2^* in breast cancer. The role of R_2^* as an imaging biomarker of response to neoadjuvant chemotherapy (NAC) is also explored. Methods: 37 patients with solid, well defined, primary invasive ductal breast adenocarcinomas were imaged with a spoiled multi-gradient echo T_2^* -weighted MRI sequence (TE 5-75ms, TR100s, flip angle (α) 40° , 8mm slice thickness, FOV 260mm, 256° 2 matrix). T_1 -weighted DCE-MRI sequences (TE 4.7ms, TR 11ms, α 35°, 256° matrix) and DSC-MRI sequences (TE 20ms, TR 30ms, α 40°, 128° matrix) were also performed using 0.1mmol/kg and 0.2 mmol/kg body weight of Gd-DTPA respectively. R_2^* values were calculated using a least-squares fitting routine on In[signal] plotted against TE. DCE-MRI images were analysed with Toftsy pharmacokinetic model [2] and a modified Fritz-Hansen assumed arterial input function [3] using specialist MRIW software (Institute of Cancer Research, London) [4]. DSC parameters were calculated from a fitted Γ -variate function using MRIW [4]. Whole tumour ROI parametric values were acquired: R_2^* , K^{trans} , V_e , k_e , IAUGC60, rBV, rBF and the MTT of the fitted curve. Relationships between baseline R_2^* and tumour characteristics (size, grade, ER/PR/HER2 status) and DCE and DSC-MRI parameters were explored using Spearman's rank correlation for continuous variables and the Mann-Whitney U test for discrete variables. Baseline R_2^* and changes in R_2^* with treatment were also correlated with final pathological response using paired t-testing. R_2^* was compared with DCE and DSC kinetic parameters as a predictor of response using ROC (receiver operating characteristic curve) analyses. Figure 1 Relationship between R₂* and rBV **Figure 2** R_2^* maps of a malignant breast tumour in a responder (a) at baseline (R_2^* 16.2 s^{-1} , K^{trans} 0.27 min⁻¹, rBV 431) and (b) after 2 cycles of NAC (R_2^* 30.5 s^{-1} , K^{trans} 0.15 min⁻¹, rBV 256) with (c) corresponding histogram depiction of R_2^* values **Results:** Patients were imaged both prior to (n=31) and after 2 cycles of NAC (n=27). Significant negative correlations were observed between baseline R_2^* , and rBV & rBF (r=0.51, p=0.006; r=-0.46, p=0.015) (Fig.1). This relationship disappeared after NAC. There were no correlations observed between baseline R_2^* and other imaging or tumour characteristics, or pathological response. Increases in R_2^* values were seen with NAC in pathological responders (36.5s⁻¹ vs 31.7s⁻¹, mean of differences -4.9, p=0.025) (Fig.2). ROC analysis showed that R_2^* was a relatively poor predictor of response compared to other kinetic imaging parameters (Table 1). | Parameter | Responders (n=16) | | | Non-responders (n=11) | | | | |---|--------------------|-------------------|---------|-----------------------|--------------------|---------|------| | | Baseline | Post 2 cycles NAC | t-test | Baseline | Post 2 cycles NAC | t-test | ROC | | R ₂ * (s ⁻¹) | 31.7 (16.2-45.1) | 36.5 (28.0-50.4) | p=0.025 | 30.4 (20.2-40.2) | 32.4 (26.1-41.5) | p=0.066 | 0.62 | | K ^{trans} (min ⁻¹) | 0.28 (0.13-0.47) | 0.12 (0.00-0.25) | p<0.001 | 0.22 (0.18-0.26) | 0.21 (0.04-0.32) | p=0.570 | 0.84 | | k _{ep} (min ⁻¹) | 0.72 (0.41-1.44) | 0.31 (0.00-0.66) | p<0.001 | 0.57 (0.41-0.98) | 0.53 (0.26-0.93) | p=0.330 | 0.90 | | v _e (%) | 39.9 (27.4-59.2) | 34.7 (0.0-69.6) | p=0.097 | 41.6 (23.0-58.5) | 39.5 (6.9-54.5) | p=0.572 | 0.59 | | IAUGC ₆₀ (mM.s) | 16.72 (9.53-26.05) | 8.58 (4.01-16.25) | p<0.001 | 14.10 (12.24-17.60) | 13.14 (4.65-18.41) | p=0.479 | 0.83 | | rBV (AU) | 285.8 (58.8-503.6) | 141.3 (4.4-382.7) | p=0.005 | 156.3 (66.8-257.4) | 174.7 (60.9-488.8) | p=0.548 | 0.83 | | rBF (AU) | 6.2 (1.2-11.4) | 2.9 (0.2-7.7) | p=0.005 | 3.2 (1.3-5.4) | 3.6 (1.2-10.0) | p=0.569 | 0.84 | | MTT of fit curve (s) | 46.9 (40.5-50.1) | 46.5 (26.7-54.1) | p=0.694 | 48.8 (44.3-55.9) | 49.1 (44.6-53.9) | p=0.842 | 0.53 | | Size (mm) | 38 (17-61) | 20 (0-35) | p<0.001 | 37 (22-85) | 34 (16-85) | p=0.011 | 0.86 | Table 1 MRI kinetic parameters at baseline and according to pathological response **Discussion:** The strong pre-treatment inverse correlations between R_2^* and rBV & rBF suggest that R_2^* is dominated by the oxygenation status of blood in treatmentnaïve breast cancers. The uncoupling of R_2^* from blood volume/flow and increases observed in R_2^* after 2 cycles of NAC may indicate that human breast cancers become more hypoxic in those that successfully respond to chemotherapy, an assertion that is supported by preclinical data [5]. R_2^* after treatment may more accurately reflect tumour oxygenation. However, changes in R_2^* are a poor predictor of chemotherapy response in breast cancer compared with DCE and DSC-MRI kinetic parameters [6]. **References:** [1] McPhail, LD and Robinson SP. (Personal Communication). [2] Tofts PS. JMRI (1997)**7**(1): 91-101. [3] Walker-Samuel S. et al. Phys Med Biol 2007, **52**:589-601. [4] d'Arcy JA et al. Radiographics 2006, **26**(2):621-32. [5] Sersa G, Krzic M, et al. Cancer Res 2001, **61**(10): 4266-71 [6] Ah-See ML, et al. Clinical Cancer Res (2008) **14** (20): 6580-9.