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Figure 2: Simulated (left) and in vivo (right) ADC point estimates without adaptive 
smoothing (a and e) and with adaptive smoothing (b and f). ADC uncertainties with adaptive 
smoothing (c and g) and without adaptive smoothing (d and h). On all maps with adaptive 
smoothing, the borrowing strength is shown by a border around each pixel; bright lines 
indicate strong borrowing; dark lines indicate weak borrowing. Point estimates and 
uncertainty maps are windowed equivalently, illustrating the decrease in uncertainty when 
adaptive smoothing is implemented. 

 

Figure 1: ADC probability density functions for 
simulated diffusion data (ADC=0.004mm2/s) 
without (black line) and with (grey line) adaptive 
smoothing. 
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Introduction: The spatial distribution of apparent diffusion coefficient (ADC) estimates in tumours is typically heterogeneous, although decoupling the 
contribution of measurement uncertainty and true regional variation is challenging. In this study, the use of an adaptive Bayesian Markov random field model 
to estimate ADC values was evaluated and applied in vivo. This approach has previously shown promise in reducing the uncertainty associated with parameter 
estimates in dynamic contrast-enhanced MRI [1], by using neighbouring pixels to inform the fit to a set of data from a given voxel. Furthermore, the 
‘borrowing strength’ assigned to each pixel can be used to create a map of tumour regions with similar ADC estimates, thereby elucidating tumour 
heterogeneity. In this study, the feasibility of using adaptive smoothing to estimate tumour ADC values was evaluated and the uncertainty and accuracy of 
ADC estimates compared with the standard approach in which voxels are treated as independent. 
Materials and Methods: Statistical Model: A Markov chain Monte Carlo (MCMC) approach was used to construct probability density functions on a pixel-
by-pixel basis, using a hierarchical Bayesian model. Within this, the data model assumed Rice-
distributed magnitude MR data, which has recently been shown to provide good ADC accuracy in 
tumours compared with other approaches [2,3]. A single exponential decay was used for the 
process model: 
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where α and β are fitted parameters (exp(α)=S0 and exp(β) = ADC). A Gibbs sampler with 
Metropolis-Hastings updates was used for the Markov chain Monte Carlo (MCMC) analysis, in 
which random samples from the joint posterior of α and β were obtained. Histograms are 
constructed for each parameter from the trajectory of their random walk, from which the 
expectation value and spread determine a point estimate and uncertainty, respectively. As per 
Schmid et al [1], the differences in the values of α and β in neighbouring voxels were assumed to 
be Gauss-distributed. The precision (inverse of the variance) of these distributions defines the 
strength of the smoothing between neighbouring pixels and these precision parameters were 
included in the Bayesian model and estimated using Gibbs sampling; a large estimated precision 
implies strong borrowing from a neighbour, whilst a small precision implies weak borrowing. 

Simulation: A 20×20 matrix ADC map was generated with central and peripheral circular 
regions with differing (uniform) values to represent a typical tumour distribution with viable 
tumour rim (ADCrim=1×10-3 mm2/s) and central necrotic region (ADCcore=3×10-3 mm2/s). 
Simulated acquisition parameters mirrored those used in vivo and a signal-to-noise ratio for the 
first b-value data point was set equal to 10. The relative accuracy and precision of ADC estimates 
with and without the Markov random field were evaluated. 

In Vivo: ADC point estimates and uncertainties were measured in two mouse tumour models: a 
subcutaneous C6 glioma (n=5) and orthotopic PC3 prostate tumours (n=5). Acquisition parameters included: 6 b-values (6, 41, 109, 210, 337 and 504 s/mm2, 
TR=1000ms, TE=36 ms, field of view=3×3cm, slice thickness=1mm, matrix size=128×128. 
Results: Figures 1 and 2 show example ADC probability density functions and ADC point estimate and uncertainty maps, respectively, both with and without 
adaptive smoothing. It is clear that use of the adaptive Markov random field reduces scatter in the point estimate maps and significantly reduces the associated 
uncertainty. In simulations, the adaptive Markov random field significantly reduced the relative error in ADC estimates from (13.3±5.4)% to (4.8±3.1)% 
(p<0.001) and the relative uncertainty from (17.4±5.0)% to (0.46±0.92)% (p<0.001). Inspection of the spatial distribution of precision (smoothing) parameters 
shows clear delineation between the two tumour regions and the background noise (Figure 2d and h). In vivo, the absolute uncertainty in ADC estimates was 
significantly reduced from (0.12±0.08)×10-3 mm2/s to (0.009±0.01)×10-3 mm2/s (p<0.001), corresponding to an average 81.2% improvement in precision. 
Visual inspection of the distribution of spatial components within tumour ROIs revealed much greater heterogeneity in PC3 orthotopic prostate tumours 
compared with C6 subcutaneous tumours. 
Discussion and Conclusion: The precision and accuracy of 
ADC estimates in tumours was significantly improved by 
use of Bayesian adaptive Markov random field model, 
compared with an equivalent model without adaptive 
smoothing. This approach is promising as it allows ADC 
estimates to be greatly improved without changing 
acquisition parameters. Thus, high resolution data or fewer 
averages could be acquired for the same estimate precision. 
Furthermore, elucidation of homogeneous regions of tumour 
tissue may help inform tumour tissue classification by 
reducing the confounding influence of measurement 
imprecision. 
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