MR characterization of the tumor microenvironment after arsenic trioxide treatment: evidence for an effect on oxygen consumption that radiosensitizes solid tumors

C. Diepart¹, O. Karroum², J. Magat², O. Feron², B. Jordan², and B. Gallez²

¹UCL, Brussels, Belgium, ²UCL

Introduction

The partial pressure of oxygen (pO₂) is a crucial factor affecting the response of tumors to irradiation and other cytotoxic treatments. It has been predicted that modification of oxygen consumption is much more efficient at alleviating hypoxia than modification of oxygen delivery.

Arsenic has been reported to have anti-tumor effect in acute promyelocytic leukemia and in solid tumors. As_2O_3 seems also to inhibit mitochondrial respiratory function in human leukemia cells. Thus, we hypothesized that As_2O_3 could be an important modulator of tumor oxygenation by affecting the oxygen consumption of tumors. We characterize the evolution of the tumor micro-environment after As_2O_3 treatment.

Materials and methods

The effect of As₂O₃ (5 mg/kg) was studied in a transplantable liver tumor model (TLT) and in a Lewis Lung Caecinoma (LLC). Local pO₂ was measured in vivo using low frequency EPR (1) and ¹⁹F-relaxometry (2). The oxygen consumption rate was measured in vitro using high-frequency EPR. At the maximum pO₂ (after 1h30) perfusion and radiation sensitivity were also studied by Patent Blue staining assay and regrowth delay experiment after X-Ray irradiation (10Gy), respectively.

Results

The administration of As_2O_3 increases significantly the pO_2 (measured by EPR) in TLT and LLC tumors, an effect that was not observed for the control group (Fig.1). The results were confirmed by ^{19}F NMR relaxometry. The increase in pO_2 induced by As_2O_3 was not due to an increase in tumor perfusion as shown by the Patent blue staining assay (Fig.2). As the increase in pO_2 was not due to an increase in perfusion, the tumor oxygen consumption was investigated. The administration of As_2O_3 significantly decreased the rate of oxygen consumption (Fig.3). Finally, the irradiation (10Gy) of tumors showed a regrowth delay that was significantly increased in arsenic-treated mice.

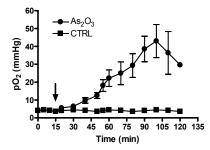


Fig.1: Tumor pO_2 measured by EPR oximetry in TLT tumors as a function of time. Arrows, injection time of the drug.

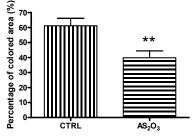


Fig. 2: Effect of As₂O₃ on blood perfusion measured by the Patent blue staining.

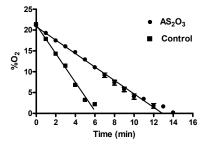


Fig. 3: Effect of As₂O₃ administration on tumor oxygen consumption rate in TLT tumor cells.

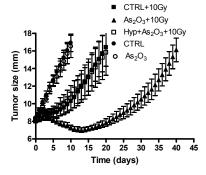


Fig. 4: Effect of As₂O₃ and radiation on TLT tumor regrowth.

Conclusion

Arsenic trioxide is an important modulator of pO_2 by decreasing oxygen consumption and enhances the response of tumors to radiotherapy. The time-window for the radiosensitization effect by As_2O_3 can be predicted using MR oximetry techniques (EPR or ¹⁹F NMR relaxometry)

References (1) Gallez et al. NMR Biomed. 2004. 17.240-262. (2) Jordan et al. MRM 2009. 61. 634-638.