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INTRODUCTION This abstract presents a method for estimating the 
number of patients that should be recruited to dynamic contrast-enhanced 
(DCE) MRI-based clinical trials of novel cancer therapies; the main 
contribution we make is to consider the role that tumor heterogeneity plays. It 
is increasingly recognized that DCE-MRI tracer kinetic modeling1 is of great 
utility in the study of the tumor microenvironment, particularly in the context 
of early phase clinical trials of novel therapies2. Until recently it has been 
common practice to treat tumors as homogenous—either by fitting a tracer 
kinetic model to an averaged time series (i.e., the time series formed by 
averaging the contrast agent concentrations at each dynamic time point over 
every tumor voxel), or by fitting a tracer kinetic model at each voxel, but then 
averaging the voxel-wise parameter values over the entire tumor. While these 
methods have proven useful, maps of tracer kinetic model parameters 
typically exhibit clear spatial structure in the tumor microenvironment 
(Fig. 1), and there is growing evidence that by considering tumor 
heterogeneity, better analyses can be performed3,4. Here, we focus on the 
planning of imaging-based trials and present a method to estimate the number 
of participants that should be recruited, by considering statistical power and 
tumor heterogeneity. Our work is important because only 14% of the DCE-
MRI-based trials reviewed in reference 5 reported sample size considerations 
and none considered tumor heterogeneity. 
METHOD The key insight that we build upon is the recognition that anti-
vascular and vascular-disrupting agents tend to preferentially affect certain 
regions of tumors3. The t-test is commonly used in DCE-MRI-based studies 
of cancer therapies5 to test for post-treatment changes in summaries of Ktrans. 
These summaries are often the mean or median value of Ktrans, with averaging 
performed over the tumor; however, the observed effect will be attenuated by 
tumor regions that are unaffected by the treatment (such as necrotic regions3). 
Such averaging will disguise genuine therapeutic action and may, in the worst 
case, result in type II errors. The general idea is to use imaging-derived 
knowledge of drug effect and heterogeneity from one phase of testing (e.g., 
phase I) to inform a subsequent phase (e.g., phase II): by simulating a large 
number of imaging-based trials using a tumor model that understands how 
heterogeneity changes after treatment, a distribution of required sample sizes 
for various tumor partitions (described below) can be computed. Compared to 
the conventional approach of computing a point estimate of the required 
sample size, computing distributions allows decisions about the tradeoff 
between trial cost and power to be made. 
We model tumor heterogeneity in terms of a spherical core and a spherical 
shell-shaped rim (Fig. 2), which differ in Ktrans values. Tumors are usually 
aspherical, but shape is much less important than the proportion of voxels in 
each partition. We estimate these proportions using k-means clustering6, with 
k=2 to identify rim and core partitions (Fig. 1). We account for a possible 
non-enhancing region of the core (Fig. 1), by assuming it to be non-tumor. 
Let us assume the set of tumors T={T1,…,TN}. We denote the (real) pre- and 
post-treatment Ktrans maps of tumor Ti as Ki

Pre and Ki
Post, respectively, where 

Ti∈T. To simulate a pre-treatment Ktrans map, a tumor Tj∈T, is randomly 
chosen and each voxel of an appropriately-sized 3D array is assigned as being 
rim, core or non-tumor according to the model of tumor heterogeneity and the 
proportions determined by the clustering result (Fig. 2). A resampling method is then used to populate those rim and core voxels with Ktrans values taken from the rim 
and core partitions in Kj

Pre. The result is a simulated pre-treatment Ktrans map (Fig. 2). The corresponding post-treatment map is simulated similarly, except we use Kj
Post 

as the prototype map, modeling intra-tumor changes in heterogeneity, rather than inter-tumor changes. Repeating this process several times allows us to simulate an 
entire trial; we choose the prototypes Kj

Pre and Kj
Post using resampling to model the variation likely to be observed in the population. 

We used data from 26 liver metastases from 10 colorectal cancer patients who underwent treatment with bevacizumab. DCE-MR imaging was performed before and 
after treatment using a 1.5 T Philips Intera scanner and pre- and post-treatment Ktrans maps were computed; the reader is referred to reference 7 for full details of the 
study protocol. We simulated 1000 trials, each with 10 tumors. For each partition (rim, core, & whole tumour) and each trial, the observed effect size was computed and 
used to calculate the number of tumors, n, that would be required8 to detect that effect at the α=0.05 significance level with statistical power 1-β=0.8. The distributions 
of these required sample sizes were then visualized using cumulative histograms. The simulations were performed using Mathematica version 7. 
RESULTS Fig. 3 shows the sample size distributions. For this trial, distributions for the core and whole tumor partitions were similar, but computing median Ktrans over 
the core results in more powerful tests: with n≤15 patients, there is a 92% probability of detecting drug effect, but up to 20 patients are required to detect drug effect 
with probability > 90% if median Ktrans is computed for the whole tumor (Fig. 3). If averaging were performed over the rim, more than 100 patients would be required. 
CONCLUSIONS We have developed a method to estimate sample size requirements for imaging-based trials that accounts for tumor heterogeneity. Rather than 
provide point estimates of sample size requirements, the method estimates distributions to allow decisions about the tradeoff between trial cost and power to be made. 
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Figure 1 A Ktrans map (left) showing the classic rim, core and non-
enhancing core partitioning, and the corresponding clustering result 
(right), showing the voxels identified as rim. 

Figure 2 The model of tumor heterogeneity (left), and a simulated pre- 
and post-treatment parameter map pair (right). 

Figure 3 Cumulative histograms 
showing the proportion of 
simulated trials for which a given 
sample size, n, was large enough, 
with median Ktrans calculated for 
the whole tumor, rim and core 
regions. 
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