
Fig. 1. Whole-brain real-time craving classification for a single 
cocaine patient, analyzed retrospectively and prospectively. Green 
and gray regions represent cocaine and neutral videos respectively. 
The prospective data begin to match the retrospective after around 
5 minutes of training. 
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Introduction: Advances in online image reconstruction and real-time processing of functional MRI data in recent years have opened new 
possibilities for providing patients with real-time information on their brain state as they participate in functional MRI experiments [1,2]. 
Recent studies have demonstrated that subjects can learn to control activity in localized regions of the brain through a series of training 
exercises in which they are instructed to try to periodically increase or decrease the level of a real-time feedback marker. Typically, the 
marker is designed to target a localized region of the brain. In a pioneering study of this type, deCharms et al. [3] demonstrated that real-time 
fMRI feedback from the pain-control region of anterior cingulate was effective in teaching both chronic pain patients and healthy subjects to 
control their pain. These studies offer hope for applying real-time fMRI feedback in other disorders where enhanced control over a brain 
state, e.g., increasing control of craving in addicted individuals, is the therapeutic goal. However, unlike the well-characterized “pain control” 
region of the anterior cingulate, the “craving control” circuits in addiction are just beginning to be characterized, and – adding to the 
challenge – may vary considerably across individuals. To address these challenges, we have pursued the use of whole-brain classifiers (i.e. 
classifiers computed on the basis of activity throughout the entire brain). 
          In this study, we have implemented software to provide cocaine-addicted patients with real-time information on their brain state(s) 
occurring during cue-induced cocaine craving vs. a neutral comparison condition (e.g., watching a non-drug video). As a prelude to the 
formal training experiment, the software was tested retrospectively on data acquired from a group of MRI-eligible treatment-seeking cocaine 
patients during their stay in a residential treatment facility.  

Methods: All imaging was performed on a 3T Siemens scanner (Siemens, Erlangen, Germany) using a T2*-weighted Blood Oxygen-Level-
Dependent (BOLD) imaging sequence (single shot EPI), with the following imaging parameters: 3x3 mm2 in-plane resolution; 3.4 mm slice 
thickness; 33 slices; 192x192 mm2 field of view; TE = 30 ms; TR = 2 s; total scan time = 16 minutes. 
fMRI tasks: Subjects (n=5, ongoing) were shown a series of 30 second videos (each preceded by 10 seconds of instructions) alternating 
between videos containing cocaine-related content (simulated buying, selling and smoking of “crack” cocaine), and neutral (non-drug) 
videos. Each 80 second interval was considered a task cycle (comprising a neutral video and a cocaine video). 
Real-time software: By using BOLD data acquired during the first few task cycles of the session, the software computes a linear classifier on 
the basis of voxels throughout the brain, and then begins feeding back a visual representation of the whole-brain state (cursor moving along a 
color bar, directly underneath the video) to the patient in real time. As additional data is acquired, the classifier is continually re-optimized. 
The classifier is computed using partial least-squares (PLS) regression [4], in which each image voxel is considered a predictor variable and 
the dependent variable is defined as +1 for cocaine-video frames and -1 for all other frames. In order to minimize BOLD drift and other 
confounding effects, the mean signal intensity at each voxel is subtracted out over each task cycle.  
Data analysis: As mentioned above, the software was tested retrospectively on data collected from a group of cocaine addicts. The data were 
analyzed using two modes: retrospective and prospective. In retrospective mode, cycles were excluded one at a time, and the remaining data 
were used to compute the classifier, which was then used to predict the level of craving throughout the excluded cycle. In prospective mode, 
the analysis was the same, except that only previously acquired cycles were used to predict the data of a given cycle. 

 Results: Fig. 1 shows the results of the retrospective analysis for 
one of the five subject datasets analyzed. In retrospective mode, the 
classifier was able to distinguish between the neutral and craving 
states in almost every cycle (for all 5 subjects). In prospective mode, 
the classifier began to closely match the retrospective data after 
around five minutes of training (or around three task cycles). 
Computation of the real-time classifier took less than one second on 
a standard workstation (Intel Core 2 Duo CPU 2.53GHz) for 480 
frames and 22,000 voxels.  

Conclusion: These initial data demonstrate that a whole-brain 
classifier based on PLS regression can rapidly distinguish between 
the brain states associated with viewing a cocaine video vs. a neutral 
(non-drug) video, and that relevant visual feedback based on this 
distinction can be fed back to the patient in near real-time (1-2 sec 
lag).  Rapid and accurate classification was evidenced for each 
cocaine patient’s dataset, with minor variation in the time needed to 
train the classifier. This technical success sets the stage for clinical 
application in the target population, where the classifier and feedback 
will be focused on successful inhibition of cocaine craving. 
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