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INTRODUCTION 
Kidney cortex and medulla are two important renal regions and perform different renal functions in the kidney. Segmentation of kidney cortex and medulla on MR 
images can help to evaluate renal function more specifically and accurately. However, manual outlining of kidney cortex and medulla is time tedious and subjective 
dependent on the operator. In order to shorten segmentation time and avoid the operator biases, this work implements a multi-feature K-means [1] method, which 
utilizes two-feature values of kidney tissue T1 and perfusion weighted information to automatically segment the cortex and medulla. The effectiveness of the method is 
evaluated, and a semi-automated approach is suggested. 
MATERIALS AND METHODS 
This study complies with HIPPA and was approved by our institutional human subjects review committee. The written informed consents were collected from all 
subjects. A total of 24 subjects (11 with native kidneys and 13 with transplanted kidneys) with a wide range of renal function as determined by the estimated glomerular 
filtration rate (eGFR) were recruited. The MR examinations were performed on a 1.5 T MR scanner (Excite HD, GE Healthcare, Milwaukee, WI, USA) with an eight-
element phase array cardiac coil (GE Healthcare, Milwaukee, WI, USA). Kidney T1 was fitted from a series of six to eight abdominal MR images acquired at different 
inversion times (TI: 50-3500 ms) by use of an inversion recovery single shot fast spin echo (IR-SSFSE) sequence with the following readout parameters: 
TR/TE=4000/24.8 ms, FOV=34 cm and 128 x 128 matrices. Kidney perfusion weighted information was measured from ASL images. The ASL images were acquired 
using a 20 ms hyperbolic secant adiabatic inversion pulse in a FAIR-Fiesta technique [2] with the following readout parameters: TR/TE/flip = 4.6/2.3ms/70°, BW = 83.33 
kHz, FOV = 34-36 cm, and 128 x 128 matrices. Following an inversion time of 1.2 s, a centric phase encoded balanced-SSFP image was acquired. Control and tagged 
images were alternated until 64 images (32 pairs) were acquired. All analyses were performed using custom scripts written in MATLAB (Version7.5; MathWorks Inc., 
Cambridge, MA, USA). 
All inversion recovery images, control and tagged images were first automatically aligned to correct for rigid body motion and then were manually aligned to 
compensate for more local physiologic motion. The boundary of kidney was then manually outlined. Kidney T1 was calculated on a pixel-by-pixel basis by fitting the 
inversion recovery data to the equation Mz = M0 [1-α·exp(TI/T1)], where Mz, M0, and α represent MR signal, proton density and inversion factor, respectively. The kidney 
perfusion weighted image was then obtained by subtracting the average control image from the average tagged image. The vessel region within the central body of the 
kidney was then manually excluded from both T1 and perfusion weighted images. This remained kidney tissue with just cortex and medulla for further classification.  
The method of K-means was then applied on the remaining kidney pixels to optimally partition the pixels 
into two sets by minimizing the overall within-cluster distances. Every pixel to be classified is a vector that 
is associated to T1 and perfusion weighted values. Euclidean distance was used in our implementation of K-
means algorithm and the centroid of each cluster was the mean of the cluster. The performance of the K-
means method was evaluated by comparing the automatic segmented results with manual segmentation 
outlined on the FAIR tagged image by an image scientist with review of a radiologist as the reference 
standard. There were four types of pixels defined based on comparing the two segmentations: TP (true 
positive) for a pixel that resides in both segmented cortex regions, FN (false negative) for a pixel that 
resides in manually segmented cortex while in the K-means medulla, FP (false positive) for a pixel resides 
in manually segmented medulla while in the K-means cortex, TN (true negative) for a pixel that resides in 
both segmented medulla regions. Based on this, three similarity measures were calculated for both cortex 
and medulla [3]: percentage overlap (PO) = 100×TP/(TP +FN), percentage extra (PE) = 100×FP/(TP+FN) 
and similarity index SI = (2 × TP)/(2 ×TP + FN + FP). A threshold of 60% was applied on the measures of 
SI for both cortex and medulla to identify reasonable and unreasonable segmentations.  
RESULTS AND DISCUSSION 
The average K-means segmentation time is approximately 1.5 s / kidney while the average manual 
segmentation time is about 5 min / kidney. The number of pixels for cortex and medulla regions based on 
manual segmentation varied from 748 to 2705 and 255 to 1604 pixels respectively. Manual and K-means 
segmentations on FAIR tagged images for native kidneys typically demonstrated good qualitative 
agreement (Fig.1). The distribution of the three similarity measures for cortex (Fig.2 (a)) and medulla 
(Fig.2 (b)) demonstrates that the medulla has particularly high PE values, which suggests a higher 
percentage of pixels in the cortex were incorrectly included in the medulla by the K-means method. The 
cause of this is the lower total number of pixels in the medulla compared to the cortical region.  Reducing 
the weighting of pixel membership within the medulla cluster may be desired to correct for this. A total of 
nine subjects have SI values lower than 60% with respect to either cortex or medulla. To avoid losing 
segmentation accuracy, a semi-automatic strategy is suggested in which the operator visually inspects the 
K-means segmented results and can modify the segmentation manually when necessary. Future work will 
develop performance measures, based on the ratio of medullary to cortical pixels and morphological 
operators as indices of performance when the true segmentation result is not known. 
CONCLUSIONS 
A K-means method was implemented to automatically segment the kidney cortex and medulla. It radically 
shortens the segmentation time compared with manual segmentation. However there are still situations 
where the K-means segmentation does not perform well so that a semi-automatic strategy can be suggested 
based on tabulated performance indices. Manual segmentation would be required when necessary. Overall, 
the K-means approach can facilitate translation of functional MRI methods into the clinic for more efficient 
assessment of kidney disease.  
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Figure 1. Manual and K-means segmentations on 
FAIR tagged images for an individual’s native 
kidneys. (a) cortex and medulla, (b) manually 
segmented cortex and medulla, (c) K-means 
segmented cortex and medulla. Color bar indicates 
MR signal in an arbitrary unit. 
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Figure 2. Plots of the three similarity measures for 
kidney cortex (a) and medulla (b) for every subject 
included in the study. Every ‘+’ sign corresponds 
to one subject.  
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