Measuring T₂ in the liver. A comparison between ¹H spectroscopy and SE-EPI

C. L. Hoad¹, M. Stephenson¹, J-Y. Lim¹, A. G. Gardener¹, C. Costigan², R. C. Spiller³, P. A. Gowland¹, L. Marciani³, G. P. Aithal³, and S. T. Francis¹ ¹School of Physics and Astronomy, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom, ²Brain and Body Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom, ³Nottingham Digestive Diseases Centre, NIHR Biomedical Research Unit, University Hospitals NHS Trust,

Nottingham, Nottinghamshire, United Kingdom

Introduction

There has been much recent interest in using MRI and MRS to replace liver biopsy to determine liver fibrosis [1], liver iron content [2] and liver fat fraction [3]. An important parameter is the transverse relaxation time, T_2 ; it can be combined with T_2^* to estimate iron content and is used in correcting 1H spectra for T_2 decay when calculating fat fractions [4,5]. It has also been suggested as a parameter for staging liver fibrosis [6,7]. Currently ¹H liver spectra are corrected using literature T_2 values taken from MRI studies of bulk tissue, averaged over many individuals [8]. However, if fibrosis and iron content alter the tissue T_2 then it will be necessary to correct clinical spectra on an individual basis. The aim of this study was to compare liver tissue water T_2 measured using 1H spectroscopy with that measured using Spin-Echo (SE) EPI T_2 mapping to determine whether a small number of echo times can be used for the T_2 decay correction in MRS, and to investigate the variation of T_2 in patients with chronic liver disease.

Methods

The study was approved by the local NHS Ethics Committee and all patients gave written, informed consent. Patients (n=18, 13 male) with chronic liver disease confirmed by liver biopsy were scanned on a single occasion using a 1.5 T Philips Achieva scanner with body transmit and 5-element SENSE cardiac coil. MRS ¹H spectra were acquired from a 30x30x30 mm³ voxel (positioned to minimise contributions from large blood vessels) using a varying TE PRESS sequence (90y-(TE₁/2)-180x-(TE₁/2+TE₂/2)-180z-(TE₂/2)-acq) with respiratory triggering (16 spectra at TE=30 ms, 8 at TE=40 ms, 8 at TE=60 ms and 8 at TE=80 ms where TE₁+TE₂=TE and with constant TE₁=10 ms), minimum TR was 3 s. MRI T₂ maps were generated from SE-EPI data (9 slices, 3x3x8 mm³ voxels, 4mm slice gap, 96x96 image matrix, SENSE 2, SPIR fat saturation). Data were respiratory triggered and acquired during the expiration phase of the breathing cycle (minimum TR 3 s). 3 volumes were acquired at each of 6 TEs (27, 35, 42, 50, 60, 70 ms). Phantom data was also acquired from a 4 quadrant Gd-DTPA doped agar gel phantom which had T₂ vales of 35-90 ms, and T₁ values of 100-700 ms, across the quadrants. Data were acquired using the same protocol as for the liver patients using simulated respiratory triggering to give a TR of 6 s.

Data Analysis

Spectroscopy: All spectra were individually phase- and frequency-offset corrected before averaging spectra from the same TE. Areas under the water (and CH₂ fat peak if in-vivo data) were calculated in Matlab[®] (Mathsworks Inc, Natick, Mass.). T₂ was then calculated from the linear least squares fit of ln(area under peak) vs. TE. *Imaging:* If respiratory triggering was poor, some through-plane misalignment between slices occurred and these volumes were discarded from the analysis. A mask was drawn around the liver region in a single TE volume (9 slices). All voxels from the SE-EPI data set within this mask were then fitted for T₂ using a weighted least squares fit, using 1/TE as the weighting factor to generate a 9 slice T₂ liver map. A histogram of the T₂ maps was then generated and the peak histogram value (which excludes most blood vessels), and mean T₂ value of the whole liver region (including blood vessels) were then calculated.

Results and Discussion

All patients tolerated the examination well as all the data was acquired under respiratory triggering. Water T_2 measured in liver tissue using SE-EPI and PRESS are shown in figure 1. There is good correlation between the mean MRI data (including vessels) and MRS T_2 data, whereas the MRS systematically measured a longer T_2 compared to the peak (mode) histogram T_2 which reflects solely tissue T_2 . There is also significant variation between subjects which may be a result of iron deposition or fibrosis, or a combination of both. However, we are currently blinded to the liver biopsy data and can draw no conclusions about this spread in the data at present. The phantom data (figure 2) showed good correlation between MRI and MRS (R=0.9993); good agreement was found between imaging and spectroscopy for short T_2 (< 50 ms; range similar to liver tissue), however, as T_2 increases there is a trend for the spectroscopy to measure T_2 shorter than imaging. Therefore, the in vivo slight increase in T_2 measured from spectroscopy is most likely due to vessel contamination of the voxel (as reflected by the closer agreement when vessels are included in the estimation of the T_2 parameter). Although every effort was taken to place the spectroscopy voxel away from large blood vessels, the large voxel size of MRS, 30x30x30 mm³ will result in the 'tissue' sample containing some blood vessels which have a corresponding long T_2 (50-80 ms) which may explain the longer T_2 measured when comparing the MRS T_2 with the peak (but not mean) of the WRI T_2 histogram. The main limitation of this study is that we are unable to compare the T_2 measurements for exactly the same tissue regions as the imaging technique has slice gaps of 4 mm (to cover the whole liver region in 9 slices) and some blood vessels in the T_2 mass appear bright and others dark depending on the orientation of the vessel in the slice. The close correspondence between MRS and MRI also suggests that 4 echo times are sufficient fo

Conclusions

There is considerable variation in T₂ of the liver of patients with chronic liver disease and therefore liver fat fractions measured using MRS require individual T₂ decay corrections. There is good agreement between liver water T₂ measured using MRS data acquired at 4 echo times and SE-EPI data, suggesting that T₂ can be accurately assessed from multiple TE MRS data (for MRS T₂ decay correction) using just 4 echo times.

References

Talwalkar J. et al. Hepatology 2008;47;332-342.
Wood J. et al. Blood 2005;106;1460-1465.
Longo R. et al. JMRI 1995;5;281-285.
Sharma P. Et al. JMRI 2009;29;629-635.
Pineda N. et al. Radiol. 2009;252;568-576.
Kim H. et al. Proc. 16th ISMRM 2008;3715.
Aube C. et al. Dig. Dis. Sci. 2007;52;2601-2609.
Szczepaniak L. et al. Am. J. Physiol Endocrinol Metab 2005;288;E462-468
Acknowledgements.

Acknowledgements

This work was funded by a Strategic Funding Initiative from the Biomedical Research Committee at the University of Nottingham.

Figure 1. Chronic liver disease patient data comparing T_2 measurements made using MRI and MRS. Dashed line is line of identity.

Figure 2. Phantom data comparing T_2 measurements made with MRI and MRS. Solid line is line of identity.