Motion-corrected pO₂ mapping in human lungs using hyperpolarized Xe-129 MRI

G. W. Miller¹, J. P. Mugler III¹, T. A. Altes¹, I. Dregely², I. Ruset³, S. Ketel³, J. Ketel³, W. F. Hersman^{2,3}, and K. Ruppert¹

Radiology, University of Virginia, Charlottesville, VA, United States, Physics, University of New Hampshire, Durham, NH, 3Xemed LLC, Durham, New Hampshire

Background: T1-weighted imaging of inhaled hyperpolarized gas can be used to quantify the partial pressure of oxygen (pO_2) in lung airspaces. A short-breath-hold implementation of the pO_2 -mapping technique, using hyperpolarized 3 He, was shown to accurately depict known pO_2 variations in phantom experiments, and yielded physiologically plausible pO_2 maps in human lungs [1]. Although most pO_2 mapping studies to date have used 3 He, wider application of this promising technique would require the use of 129 Xe [2].

One obstacle to robust implementation of this technique is subject motion, including relaxation of the diaphragm during the breath hold. Since the pO_2 calculation involves the pixel-by-pixel subtraction of images obtained several seconds apart, the resulting maps are highly susceptible to bulk motion of the inhaled gas during the acquisition.

Purpose: To demonstrate the feasibility of pO₂ mapping using hyperpolarized ¹²⁹Xe in healthy and diseased human subjects, and to explore the potential for using an image registration algorithm to compensate for subject motion during the breath-hold acquisition.

Methods: Hyperpolarized ¹²⁹Xe imaging was performed in ten subjects (5 healthy non-smokers, 1 healthy smoker, 1 COPD, 1 cystic fibrosis, and 2 sickle cell disease) using a 1.5T commercial scanner, flexible chest RF coil, and commercial prototype ¹²⁹Xe polarizer. In each subject, a pO_2 map (48×64 matrix, 6 mm resolution) was acquired at breath hold following inhalation of a ~1 L mixture containing 135 ml O_2 , 350 ml room air, and approximately 500 ml hyperpolarized ¹²⁹Xe (total oxygen concentration ~21%). A short-breath-hold implementation (total breath hold ~10 sec) of a standard pO_2 -mapping pulse sequence was used [3], in which a total of 3 images were acquired with an oxygen-sensitization time of 5 seconds between the 2nd and 3rd images. All images were acquired as coronal projections using a non-selective RF excitation pulse, although a thinner section was isolated in some of the scans, by using slice-selective pulses to destroy the hyperpolarized magnetization on either side of a 60-mm coronal slice immediately before executing the pO_2 -mapping pulse sequence.

Motion correction was implemented by applying a locally affine, globally smooth warping algorithm to generate co-registered versions of all three images [4]. For comparison, two flip-angle-compensated $p{\rm O}_2$ maps were generated for each scan (from the warped and unwarped image sets) and mean $p{\rm O}_2$ values were calculated from the simple average of the $p{\rm O}_2$ pixel values.

Results: Fig.1 shows the mean pO_2 values for each subject. For most subjects the pO_2 difference was only a few percent between the original and motion-corrected pO_2 maps. In a few subjects, the mean pO_2 value was much lower on the motion-corrected maps, primarily due to the reduction of physiologically impossible pO_2 values near the diaphragm. Fig.2 shows imaging results for the case of (a) large motion correction, (b) smaller but significant motion, and (c) no obvious motion. Motion correction did not eliminate anomalous pO_2 values near the heart, as seen in Fig. 2b. The average pO_2 among normal subjects was 113 mm Hg, whereas the average pO_2 among diseased subjects was slightly higher (118 mm Hg).

Conclusions: Lung pO_2 mapping with hyperpolarized ¹²⁹Xe appears entirely feasible in humans, and yields physiologically plausible pO_2 maps that are very similar in character to previously reported ³He results [1]. Although mean pO_2 values were slightly higher than previously measured using ³He, the measured values were not as large as previously reported results for hyperpolarized ¹²⁹Xe [2].

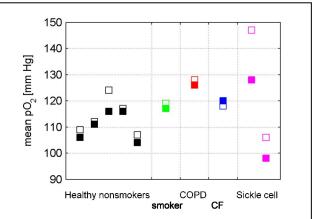
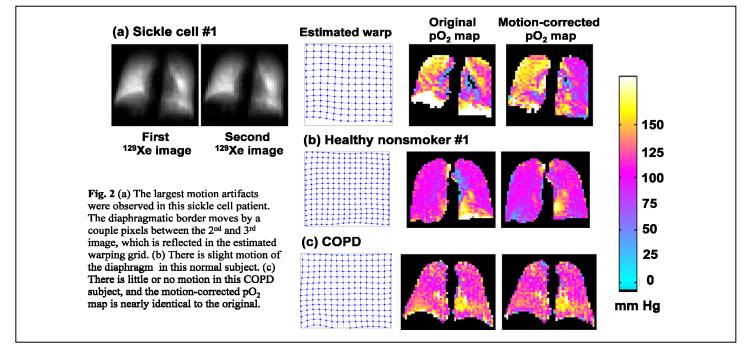



Fig.1: Mean pO₂ values by subject, calculated from original pO₂ maps (open squares) and motion-corrected maps (solid squares).

References: [1] G.W. Miller et al., Magn Reson Med 2009, in press. [2] S. Patz et al., Eur J Radiology 2007; 64:335. [3] M.C. Fischer et al., Magn Reson Med 2004; 52:766. [4] S. Periaswamy and H. Farid, IEEE Trans Med Imaging 2003; 22:865.

Acknowledgments: Supported by NIH grants R01-EB003202, R01-HL079077, R42-HL082013, and Siemens Medical Solutions.