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Introduction 
 XTC (Xenon polarization Transfer Contrast) is a technique which probes the exchange of gaseous 129Xe in the lung with  
dissolved 129Xe in the parenchymal tissue in the lung. The technique enhances sensitivity by transferring polarization from the large 
gas phase resevoir to the dissolved phase. Thus the exchange process is interrogated by the reduction in the gas phase signal.[1-3] 
CSSR (Chemical Shift Saturation Recovery) is a competing technique which also interrogates the exchange process but by direct 
observation of the dissolved phase.[3] CSSR has an advantage in that diffusion models may be directly applied to experimental 
results. The XTC method has greater sensitivity but lacks a sound theoretical foundation. To this end, we present a theoretical model 
that is applicable to the XTC method. 
Theory  
 The XTC experiment measures the amount of polarized 129Xe spins in the gas phase after a series or train of constant flip 
angle pulses (usually 180° pulses)  separated by a characteristic exchange time, τ. Let m(x,t) be the longitudinal magnetization at any 
position, x, or time, t, during the XTC experiment. We will show that m(x,t) may be well approximated by a series of terms of which 
each term is a solution to a well defined diffusion problem, dc(x,t)/dt = D d2c(x,t)/dx2. c(x,t) describes the longitudinal magnetization 
concentration for the 1D slab diffusion model subject to the following temporal conditions: c(x,0)={ 1 if x is in gas phase, 0 if x is in 
dissolved phase }, c(x,∞)={ 1-χVd/Vg if x is in gas phase, χ if x is in dissolved phase }, where Vd is the volume of the dissolved 
phase, Vg is the volume of the gas phase, and χ is the partition coefficient. In XTC, the action of a selective rf pulse, flip angle α, on 
the dissolved state is to produce the following longitudinal magnetization: ݉ሺݔ, ାሻݐ  ൌ   ݉ሺݔ, ൅ ߙݏ݋ሻܿିݐ  ݉௚ሺିݐሻܿሺݔ, 0ሻሺ1 െ  ሻ     [1]ߙݏ݋ܿ
where t± refer to the time immediately after and before the rf pulse, mg(t-) represents the gas phase magnetization at time t- which is 
assumed to be independent of position. This is a safe assumption as diffusion in the gas phase is sufficiently fast to level out any 
concentration gradients. It is important that the model for c(x,t) includes gas depletion, i.e. the gas phase is not an infinite reservoir. 
While the standard 1D slab diffusion model utilizes an infinite reservoir, gas depletion may be introduced in an ad hoc manner by 
correcting the gas phase concentration after each exchange time, τ, or smaller unit of time. The action of the selective pulse of flip 
angle α may be viewed as having two effects. One effect is to change all of the magnetization by the factor cosα (inversion for a 180° 
pulse) in both the dissolved and gas phase. The second effect is to introduce a new diffusive term which corresponds to a new slab 
diffusion problem as is demonstrated by the second term in Eq.[1]. Consequently, each rf pulse in the XTC experiment generates a 
new initial condition for any flip angle for which 1-cosα≠0. Furthermore, the transverse magnetization is assumed to decay to zero 
before the beginning of the next rf pulse.  
 This process may be elucidated as in Eq[2] by considering the first few pulses in the XTC experiment.  

Initially:    m(x,0-) = A(x) ≡ {b0 for gas phase,   χb0 for dissolved phase }    [2a] 
Apply rf pulse (n=1):   m(x,0+) = A(x) cosα + b0 c(x,0) (1-cosα)      [2b] 
Allow diffusion:   m(x,τ-) = A(x) cosα + b0 c(x,τ) (1-cosα)      [2c] 
Apply rf pulse (n=2):  m(x,τ+) = A(x) cos2α + b0 c(x,τ) (1-cosα) cosα +  b1 c(x,0) (1-cosα)    [2d] 
Allow diffusion:   m(x,2τ-) = A(x) cos2α + b0 c(x,2τ) (1-cosα) cosα + b1 c(x,τ) (1-cosα)    [2e] 

Each term in Eq.[2] evolves in time independently during a diffusion interval while each rf pulse adds an additional term that starts out as a new slab 
diffusion process. After many pulses the magnetization becomes a large sum of terms where each term involves diffusion over different exchange 
times. For 180° pulses, the terms alternately change sign which further complicates the interpretation of the XTC signal. For many 
pulses, the problem can now be solved by induction to give the magnetization after n diffusive exchange time periods (prior to the n+1 pulse) as: 

 ܾ௡ ൌ ܾ଴ ܿݏ݋௡ߙ ൅ ෍ ܾ௞m௚൫ሺ݊ െ ݇ሻτ൯ሺ1 െ ௡ିଵ௞ୀ଴ߙ௡ିଵି௞ݏ݋ܿ ሻߙݏ݋ܿ      [3] ݉ሺݔ, ݊߬ିሻ ൌ ܾ଴ ܿݏ݋௡ߙ ൅ ෌ ܾ௞ܿሺݔ, ሺ݊ െ ݇ሻτሻ ሺ1 െ ௡ିଵ௞ୀ଴ߙ௡ିଵି௞ݏ݋ܿ ሻߙݏ݋ܿ     [4] 
where the b's satisfy the recursion relation, Eq.[3], and b0 is the initial gas phase concentration. Eqs.[3,4] describe the XTC experiment for any flip 
angle for all times. As can be seen from Eq.[4], the XTC experiment measures contributions from a multitude of exchange times.  
 Alternatively, the XTC90 experiment, where cos(90°)=0, is unique in that all terms are zero except for k = n-1. Thus Eqs 
[3,4] simply become bn = bn-1mg(τ) and m(x,nτ-) = bn-1c(x,τ). And the XTC90 experiment like the CSSR experiment reflects only one 
diffusive exchange time.  
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