C. Wang¹, J. P. Mugler, III^{1,2}, E. E. de Lange¹, K. Ruppert¹, W. F. Hersman^{3,4}, I. M. Dregely³, I. Ruset^{3,4}, S. Ketel⁴, and T. A. Altes¹

¹Radiology, University of Virginia, Charlottesville, VA, United States, ²Biomedical Engineering, University of Virginia, Charlottesville, VA, United States, ³Physics, University of New Hampshire, Durham, NH, United States, ⁴Xemed LLC, Durham, NH, United States

Introduction: Hyperpolarized (HP) noble gas (³He and ¹²⁹Xe) diffusion MRI, which can be used to non-invasively assess the lung microstructure, has been shown to detect the early microstructural changes in emphysema ^[1,2]. Research on ¹²⁹Xe diffusion MRI has significantly lagged behind that for ³He because of historically low polarization levels achieved for ¹²⁹Xe. In recent years, higher polarization levels for ¹²⁹Xe have become available, which greatly enhances its possible clinical applications ^[3]. The purpose of this study is to investigate whether current signal-to-noise ratio (SNR) is sufficient to perform regional ¹²⁹Xe diffusion measurements, and to acquire regional ¹²⁹Xe diffusion maps in human lungs, measured over both short- and long-time-scales and with identical spatial registrations, in one breath hold.

Methods: HP ¹²⁹Xe ADC maps can be obtained for the short-time-scale (~ ms) with the interleaved-GRE-based-method that is commonly used for HP ³He diffusion measurements. Such a short-time-scale-measurement thus can be appended before a stimulated-echo-based, long-time-scale (~0.5-5s) diffusion pulse sequence ^[4] so that ADC maps corresponding to two distinct diffusion-times, but with the same spatial registration, can be acquired in one-breath-hold.

 129 Xe diffusion MRI was performed in 5 subjects [2 healthy, 1 cystic fibrosis (CF), 1 asthma and 1 sickle cell disease (SCD)] using a 1.5T commercial scanner (Avanto, Siemens) and a flexible chest RF coil (Clinical MR Solutions). 129 Xe was polarized to ~10-40% by the collisional spin exchange technique using a prototype polarization system (Xemed, LLC). Air and O_2 were mixed with about 500 ml HP 129 Xe, which was then inhaled by the subjects. b values of 0 and 6 s/cm², and a diffusion time (t_d) of 2 ms, were used for the GRE-based-technique. Parameters for the stimulated-echo-based technique included $b = 238 \text{ s/cm}^2$, tag wavelength = 5 mm and $t_d = 1.5 \text{ s}$. Coronal projection imaging was performed in 1 healthy subject and the CF subject. Three axial ADC maps were acquired in the other subjects.

Results: The demographic data and ADC measurements for all subjects are listed in the table below. Example ADC maps from each subject are shown in Fig 1. The short-time-scale 129 Xe ADC was in the range of 0.02 - 0.05 cm²/s, about 10-20% of previously reported values for 3 He ADC $^{[1,4]}$, while the long-time-scale 129 Xe ADC was in the range of 0.003 - 0.10 cm²/s, about 5-10% of previously reported values for 3 He ADC $^{[2,4]}$.

Table 1. The demographic and ADC data for all subjects.

Subject number	Age	Gender	FEV1	Indication	Imaging	S	hort-time-scale	(~ ms)	Long-time-scale (~ s)		
	(yrs)		(%pred)		direction	SNR	Mean ADC ¹	STD ADC ¹	SNR	Mean ADC ¹	STD ADC ¹
1	25	F	85	Healthy	Coronal	39	0.033	0.013	70	0.0070	0.0023
2	21	F	103	Healthy	Axial	44	0.040	0.016	122	0.0085	0.0022
3	19	M	120	CF	Coronal	39	0.029	0.017	100	0.0086	0.0030
4	18	F	82	SCD	Axial	20	0.040	0.023	35	0.0044	0.0017
5	67	M	36	Asthma	Axial	16	0.046	0.024	31	0.0060	0.0019

¹: Unit: (cm²/s);

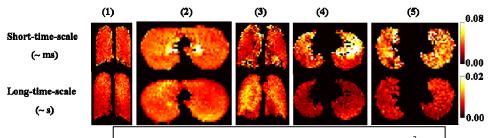


Figure 1. Example ADC maps from each subject. Unit is cm²/s.

Conclusion: Co-registered ADC maps of ¹²⁹Xe at two time scales were acquired successfully in a single breath hold in 5 human subjects. The measured ¹²⁹Xe ADC values were about 10% of the previously reported ³He ADC at both time scales, which is similar to but slightly lower than values expected on the basis of the difference in diffusivity alone (the diffusivity of ¹²⁹Xe in air is 16% of that for ³He). It is possible that differences in other physical properties of the gases (xenon is 20 times more soluble in human tissue and 2 times more viscous than helium) secondarily contribute to the difference in ¹²⁹Xe and ³He ADC. The current SNR of ¹²⁹Xe is sufficient to use diffusion MRI to investigate the lung microstructure, and ¹²⁹Xe diffusion MRI can be performed in patients with cystic fibrosis, sickle cell disease and asthma.

References: 1. Chen XJ, et al. Proc Natl Acad Sci 2000; 97:11478-81. 2. Wang C, et al. Magn Reson Med 2006; 56:296-309.

3. Hersman FW, et al. Acad Radiol 2008; 15(6):683-692. 4. Wang C, et al. J Magn Reson Imaging 2008;28(1):80-88.

Acknowledgements: Supported by NIH grants R41 HL091578, R01 EB003202 and R01 HL079077, and Siemens Medical Solutions.