MR-based dosimetry of 166holmium-loaded microspheres for internal radiation therapy treatment planning P. R. Seevinck¹, T. C. de Wit², G. H. van de Maat¹, M. A. Vente³, M. Elschot³, M. Konijnenberg⁴, J. F. Nijsen³, and C. J. Bakker^{1,2} ¹Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands, ²Dept. of Radiology, University Medical Center Utrecht, Utrecht, Netherlands, ³Dept. of Nucleair Medicine, University Medical Center Utrecht, Utrecht, Netherlands, ⁴Research and Development, Mallinckrodt Medical BV, Covidien, Petten, Netherlands Introduction- In hepatic arterial radioembolization with β -emitting microspheres, differences in arterial and portal blood supply to liver tumors and normal liver parenchyma are exploited to achieve a high tumor to liver ratio. The large variation in vascularity of tumor and liver tissue observed between patients, as well as possible arteriovenous shunting, necessitates extensive treatment planning using a scout dose, to assure a favorable dose distribution in each individual patient. The currently used Yttrium-90 microspheres (90 Y-MS) lack imaging opportunities and do not facilitate high quality biodistribution assessment. An attractive alternative for 90 Y-MS, owing to their multimodal imaging possibilities¹ and favorable radiation characteristics², constitute Holmium-166 loaded poly(L-lactic acid) microspheres (166 Ho-PLLA-MS), which have been proposed and tested for internal radiation therapy of liver malignancies 3,4 . 166 Ho-PLLA-MS have been demonstrated to be a truly shown to allow direct in vivo visualization of hepatic arterial radioembolization. Furthermore, a fast quantitative MR imaging technique was recently presented to accurately assess and quantify the biodistribution of Ho-PLLA-MS in liver tissue. The aim of this study is to prospectively test the hypothesis that MRI can potentially be used to perform dose calculations of 166 Ho-PLLA-MS for treatment planning of transcatheter radioembolization of hepatic malignancies, . **Methods-** <u>Phantom setup</u> MRI and SPECT experiments were conducted using an anthropomorphic ellipse-shaped perspex phantom (short/long axis = 19/30 cm; height = 7 cm; volume ~ 3 L) containing agarose gel with tumor-simulating gel samples embedded. Tumors were simulated by agarose gel hemispheres (~ 2x3x3 cm). Small amounts of activated ¹⁶⁶Ho-PLLA-MS, varying between 0 and 6.2 mg per tumor, were administered to the liquid gel during preparation of the tumors in ice cube containers. The Ho-PLLA-MS contained 17% w/w holmium and were prepared as previously described². The specific activity of ¹⁶⁶Ho-PLLA-MS after activation was determined to be 5.83 MBq/mg using a dose calibrator. The activity of the single tumors was determined using the dose calibrator as well (gold standard), exactly providing the amount of activity and indirectly the total mass of Ho-PLLA-MS per tumor. A total amount of 152Mbq in 26 mg of ¹⁶⁶Ho-PLLA-MS was distributed over eight tumors with the following amounts: 1.16, 1.16, 2.28, 2.86, 3.52, 3.95, 5.04, and 6.16 mg. As a control, two tumors were made without ¹⁶⁶Ho-PLLA-MS. Imaging:SPECT SPECT images were acquired using a dual-head gamma camera (Vertex MCD, Philips Healthcare, Best, The Netherlands). Imaging settings and attenuation correction were done as previously described⁷. The 360° SPECT study consisted of 120 projections for 30 s/angle. The matrix size was 128x128 with an isotropic pixel size of 4.72 mm. The images were reconstructed on a 128x128x128 matrix with isotropic voxel size of 4.72 mm using 50 iterations, according to a previously described quantitative iterative reconstruction protocol⁷. MRI Multiple gradient echo (MGE) sampling of the free induction decay (MGEFID) was performed for T_2^* relaxometry⁶ using a clinical 3T MR scanner (Achieva, Philips Healthcare, The Netherlands). Multislice imaging was performed with the following imaging parameters: FOV = 384x312 mm²; flip angle = 45°; TR/TE1/ Δ TE = 400/1.11/0.68 with 16 echoes, isotropic voxel size of 3 mm, 22 slices and total imaging time = 22.8s. <u>Dose calculations</u> R₂* maps were determined pixelwise using a weighted linear least squares fitting algorithm (Matlab) on MGEFID data, assuming monoexponential signal decay. Using the relation [Ho-PLLA-MS]=(R₂*-R₂*(0))/r₂*, with R₂* and R₂*(0) the local and baseline R₂* values and r₂* the relaxivity of Ho-PLLA-MS (180 s⁻¹.mg⁻¹.ml @ 3T), the concentration of Ho-PLLA-MS was determined pixelwise. Multiplication by the voxel volume provided the amount of Ho-PLLA-MS in mg per voxel. These maps were multiplied by the specific activity (MBq/mg) to provide 3D maps of the activity per voxel (Mbq/voxel). The SPECT reconstructions directly provided the activity distribution per voxel (Mbq/voxel). The SPECT reconstructions were up-sampled to an isotropic voxelsize of 3 mm. A 3D ¹⁶⁶Holmium dose kernel was calculated using the Monte Carlo code MCNP5 ((vs. 1.20; LANL, Los Alamos, NM), according to the method described in MIRD Pamphlet 17⁸. A point-symmetric dose kernel was generated on a 29x29x29 matrix, utilizing 3 mm isotropic voxels with units [Gy/Mbq]. By convolution of the 3D activity maps with the dose kernel, the absorbed dose maps (in Gy) were obtained for both MRI and SPECT data. Volume of interest (VOI) analysis was performed to determine the total amount of Ho-PLLA-MS present in each tumor. Results were compared qualitatively and quantitatively to reference data obtained with the dose calibrator. Results- Fig. 1 depicts the absorbed energy as a function of the source-to-target-voxel distance, representing a profile of the point-symmetric dose kernel used to determine the absorbed dose. Excellent qualitative agreement was observed between MR- and SPECT-based dose maps, as shown in figs. 2 a-h. MR-based dose maps (Figs. 2a-d) better delineated the shape of the hemispherical tumor samples as compared to SPECT-based dose maps, which appeared smoothed (Figs. 2e-h). However, MR-based dose maps show higher variation in the background where there is no ¹⁶⁶Ho-PLLA-MS present, where SPECT-based dose MR-based dose maps show higher variation in the background where there is no ¹⁶⁶Ho-PLLA-MS present, where SPECT-based dose maps showed a homogeneous background dose level. This is quantitatively confirmed in **Figs. 3a and b**. These figures demonstrate the excellent quantitative agreement between MR- and SPECT based dose maps, both providing dose levels between 0 and 70 Gy. VOI analysis on tumor volumes provided a regression coefficient of 1.05 with correlation coefficient R² of 0.987 when relating MR-based ¹⁶⁶Ho-PLLA-MS dose calculations to the reference data (**Fig. 4**). For SPECT-based ¹⁶⁶Ho-PLLA-MS dose calculations a regression coefficient of 1.00 with correlation coefficient R² of 0.998 was found. **Discussion & Conclusions**- Excellent agreement was found both qualitatively and quantitatively between MR- and SPECT-based dose calculations as well as with the dose calibrator data. The used ¹⁶⁶Ho-PLLA-MS amounts were representative for a ¹⁶⁶Ho-PLLA-MS scout dose, which in the clinic consists of a total amount of 60 mg used to predict the biodistribution of a treatment dose of roughly 600mg in a liver volume of approximately 1.5L⁹. In conclusion, MR-based dosimetry of ¹⁶⁶Ho-PLLA-MS in an anthropomorphic gel phantom was demonstrated to be feasible, indicating the potential of MR-based dosimetry for planning, guidance and evaluation of transcatheter radioembolization treatment of hepatic malignancies with ¹⁶⁶Ho-PLLA-MS. Fig. 4. VOI regression curves of MRand SPECT-based dose calculations rig 1. Dose kemer of normalin-100 data. Fig. 2 MR (a-d) and SPECT (e-h) based dose distributions in the agarose phantom ⁸ Bolch WE JNM **1999**;40(1):11S-36S ⁹ Vente MAD Eur Rad 2009 Sept. Fig. 3 Quantitative MR (a) and SPECT (b) based dose distribution mans a b c d d ¹ Seevinck PR et al. ACAMC **2007**;7(3):317-334 ² Nijsen JFW et al. EJNM **1999**;26(7):699-704 ³ Nijsen JFW Radiology **2004**;231(2):491-499 ⁴ Vente MAD EJNMI **2008**;35:1259–1271 ⁵ Seppenwoolde JH JMRI **2006**;23(2):123-129 ⁶ Seevinck PR MRM **2008**;60(6):1466-1476 ⁷ De Wit TC. PMB **2006**;51(19):4773-4787