Proton MRI of human lung using 2D radial acquisition at 1.5 T and 3.0 T

J. Zapp¹, S. Konstandin¹, and L. R. Schad¹

¹Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany

Introduction

Magnetic resonance imaging of the lung is challenging because of low proton density, respiratory and cardiac motion and susceptibility effects at air-tissue interfaces on small scales. The latter cause a transverse relaxation time T2* of lung tissue in the order of one millisecond [1] which makes high-resolution lung images difficult with conventional Cartesian sampled spoiled gradient echo sequences. Spin-spin relaxation T2 of lung tissue is in the order of 40-80 ms at 1.5 T. But T2-weighted spin echo sequences are prone to blood flow and not suited for higher resolutions due to SAR limitations. Radial k-space sampling schemes should be beneficial for lung imaging since they are robust to motion [2] and they provide sub-millisecond echo times independent of resolution. The relaxation rate 1/T2* increases linearly with magnetic field strength [3]. However, higher field strength also provides higher signal. In this work, proton MRI of the human lung using a 2D radial spoiled gradient echo technique is compared at field strengths of 1.5 T and 3.0 T.

Materials and Methods

Measurements were performed on a 1.5 T and 3.0 T whole-body MR system (Siemens MAGNETOM Avanto and Trio, Erlangen, Germany) using a 12-channel thorax/spine coil as receiver. A healthy subject (male, age 27) was examined. All images were acquired during one breathhold in end-expiration. Neither ECG triggering nor contrast enhancement was required. For measurement a 2D radial sequence was used with the following parameters: TR = 9.0 ms, FOV = 480² mm², in-plane resolution = 0.8^2 mm², slice thickness = 5.0 mm, FA = 9.0° , BW = 303 kHz, radial samples S = 600, radial projections N = 1200, pulse duration = 520μ s, TA = 22 s per slice. On both MR systems, one measurement was performed with conventional (full) RF pulses using TE = 0.77 ms, averages = 2 and a second measurement was performed with half RF (VERSE [4]) pulses using TE = 0.02 ms, no averages. For each measurement, the minimal echo time was chosen which was stipulated by the duration of the slice-selective pulse and the transmit/receive switching time of the coils. Images were reconstructed using Kaiser-Bessel gridding (W = 4.0), Hanning filter and zero-filling from matrix size 600 x 600 to 1200 x 1200.

Results

Fig. 1 shows the comparison between 1.5 T and 3.0 T with TE = 0.77 ms. Eight regions of interest were distributed (upper and lower lobes of both lungs) in the lung parenchyma separated from observable vessels. Average signal-to-noise ratio (SNR) resulted in $6.1 \pm 34\%$ for $B_0 = 1.5$ T and in $5.6 \pm 38\%$ for $B_0 = 3.0$ T. This is an average decrease in SNR of 8% in lung parenchyma using 3.0 T compared to 1.5 T with TE = 0.77 ms. Fig. 2 shows the comparison between 1.5 T and 3.0 T with TE = 0.02 ms (half RF pulses). Average SNR in the same regions as above resulted in $5.2 \pm 13\%$ for $B_0 = 1.5$ T and in $8.1 \pm 30\%$ for $B_0 = 3.0$ T. This is an average increase in SNR of 56% in lung parenchyma using 3.0 T compared to 1.5 T with TE = 0.02 ms.

Discussion

The results show that SNR in proton MRI of human lung at 3.0 T is superior to 1.5 T when using a 2D radial sequence with ultrashort echo time. Images of lung parenchyma with sub-millimeter in-plane resolution can be obtained in a single breath-hold with no contrast enhancement and no ECG triggering needed. The signal from lung parenchyma is not significantly different for 3.0 T compared to 1.5 T with TE = 0.77 ms. However, the visibility of lung vasculature at 3.0 T is increased. With TE = 0.02 ms, SNR of lung parenchyma is higher at 3.0 T than at 1.5 T. Only half RF pulses with ultrashort echo time show a gain in SNR at 3.0 T. The results suggest that lung imaging with a 2D radial sequence at higher field strengths than 3.0 T might be feasible or even beneficial in terms of SNR and/or resolution. Studies in patients with lung diseases are necessary to validate the clinical impact of the findings presented.

References

- [1] Stock et al., MRI 17:997-1000 (1999).
- [2] Glover et al., MRM 28:275-289 (1992).
- [3] Kveder et al., MRM 7:432-441 (1988).
- [4] Conolly et al., JMR 78:440-458 (1988).

Fig. 1: 2D radial acquisition with full RF pulses (TE = 0.77 ms) at $B_0 = 1.5 \text{ T}$ (a) and $B_0 = 3.0 \text{ T}$ (b). Images were acquired in 22 seconds during a single breath-hold with a resolution of 0.8 x 0.8 x 5.0 mm³. Visibility of lung vasculature is increased at 3.0 T.

Fig. 2: 2D radial acquisition with half RF pulses (TE = 0.02 ms) at $B_0 = 1.5 \text{ T}$ (a) and $B_0 = 3.0 \text{ T}$ (b). Images were acquired in 22 seconds during a single breath-hold with a resolution of $0.8 \times 0.8 \times 5.0 \text{ mm}^3$. Visibility of lung vasculature and parenchyma is increased at 3.0 T.